5 research outputs found

    Evaluating the water productivity by Aquacrop model of wheat under irrigation systems and algae

    No full text
    One of the most important simulation models in the field of water produc"tivity (WP) management in the world is the Aquacrop model, which depends on many factors and conditions related to climate, soil, irrigation water, etc. Aquacrop model program simulates vegetative growth and the yield of both grains, biomass and irrigation WP. The purpose of this study is to evaluate the Aquacrop model of two Egyptian wheat varieties, Gemeza-9 (G-9) and Misr-1 (M-1), under the two modern irrigation systems, sprinkler and drip, and the application of algae solution. Experiment location of fieldwork for this research was in El-Nubaria area, El-Beheira Governorate, and Aquacrop in Egypt. Results obtained show that under both irrigation systems, the deviation percentages between simulated by Aquacrop and observed WP values were 40.6% and 68.34%, in the case of using untreated algae and treated algae, respectively. From LSD 0.05% values, there are significant differences between all study factors (irrigation system, wheat varieties, and applied algae). Moreover, the interactions between all factors were significant under wheat grain yield of two varieties but no significant differences were found under observed or simulated WP by the Aquacrop model. It can be concluded that it is possible to recommend to use the Aquacrop simulation model for different wheat varieties in the future, to predict the WP in these semi-arid areas, especially under different irrigation systems (Bradford and Hsiao 1982; Entz et al. 1992; Johnston et al. 2002; Heng et al. 2009; Araya et al. 2010; Bennett and Harms 2011)

    Deficit Irrigation to Enhance Fruit Quality of the ‘African Rose’ Plum under the Egyptian Semi-Arid Conditions

    No full text
    Evolved in South Africa and released to market in 2009, the ‘African Rose’ plum has been introduced and grown under the Egyptian semi-arid conditions since 2010. Within that time, this cultivar has faced significant fruit quality issues, mainly poor color and low total soluble solids (TSS). Several trials using foliarly applied growth regulators have been conducted, but with little conspicuous results on fruit yield and quality. There is very limited information about the relationship between irrigation regime and fruit quality for this cultivar. Therefore, a field experiment was conducted to study the effect of deficit irrigation on the quality of the ‘African Rose’ plum during the 2019 and 2020 seasons. Five-year-old hedge growing trees were subjected to three deficit irrigation regimes: 100% (control), 80%, and 60% of the crop evapotranspiration (ETc) after the pit hardening stage until the end of the harvest season (May to June period) were evaluated. Results indicated that deficit irrigation positively enhanced the levels of abscisic acid (ABA), total phenols, and anthocyanins with improved fruit TSS and maturity index, although fruit yield, acidity, size, and firmness were decreased. Deficit irrigation could be suggested as a sustainable novel solution to improve the fruit quality of the ‘African Rose’ plum grown under the semi-arid conditions of Egypt. Although the total yield and some quality characteristics were not improved, the early harvested fruit with enhanced color and taste could be a good start for additional research to solve other quality-related issues under such conditions

    Foliar Application of Nano-Silicon Improves the Physiological and Biochemical Characteristics of ‘Kalamata’ Olive Subjected to Deficit Irrigation in a Semi-Arid Climate

    No full text
    In Egypt’s arid and semi-arid lands where the main olive production zone is located, evapotranspiration is higher than rainfall during winter. Limited research has used nanomaterials, especially nano-silicon (nSi) to improve the growth, development, and productivity of drought-stressed fruit trees, amid the global water scarcity problem. To assess the role of nSi on drought-sensitive ‘Kalamata’ olive tree growth, and biochemical and physiological changes under drought conditions, a split-plot experiment was conducted in a randomized complete block design. The trees were foliar sprayed with nSi in the field using nine treatments (three replicates each) of 0, 150, and 200 mg·L−1 under different irrigation regimes (100, 90, and 80% irrigation water requirements ‘IWR’) during the 2020 and 2021 seasons. Drought negatively affected the trees, but both concentrations of nSi alleviated drought effects at reduced irrigation levels, compared to the non-stressed trees. Foliar spray of both concentrations of nSi at a moderate level (90% IWR) of drought resulted in improved yield and fruit weight and reduced fruit drop percentage, compared to 80% IWR. In addition, there were reduced levels of osmoprotectants such as proline, soluble sugars, and abscisic acid (ABA) with less membrane damage expressed as reduced levels of malondialdehyde (MDA), H2O2 and electrolyte leakage at 90% compared to 80% IWR. These results suggest that ‘Kalamata’ olive trees were severely stressed at 80% compared to 90% IWR, which was not surprising as it is classified as drought sensitive. Overall, the application of 200 mg·L−1 nSi was beneficial for the improvement of the mechanical resistance, growth, and productivity of moderately-stressed (90% IWR) ‘Kalamata’ olive trees under the Egyptian semi-arid conditions

    Does melatonin improve the yield attributes of field-droughted banana under Egyptian semi-arid conditions?

    No full text
    Drought is regarded as one of the environmental constraints threatening agriculture worldwide. Melatonin is a pleiotropic molecule prevalent in plants capable of promoting plant endogenous resilience to many environmental challenges including drought. Banana is an important staple food consumed in developing countries especially in Africa. In this research, we studied the role of melatonin in the growth of bananas subjected to drought under the Egyptian semi-arid conditions. To achieve this objective, a field experiment on banana (Musa spp., cv. Williams) mother plants and first ratoon was conducted on a private farm for two seasons - 2019 and 2020. Three irrigation treatments, 100, 90 and 80% irrigation water requirements (IWR) were used in conjunction with four concentrations of melatonin as a foliar spray (0 μmol, 40 μmol, 60 μmol, and 80 μmol) to determine the effect of both treatments on banana plant performance under drought. The results showed that there was a substantial difference between treatments, with the foliar application of melatonin at 80 μmol concentration improving most of the yield attributes, relative water content, total chlorophyll and proline with water deficit. However, the foliar application of the molecule lowered the biochemical characteristics mostly at 80% IWR under the Egyptian semi-arid conditions. Overall, there was a concentration-dependent response with regards to IWR for the two seasons 2019 and 2020

    5-Aminolevulinic Acid and 24-Epibrassinolide Improve the Drought Stress Resilience and Productivity of Banana Plants

    No full text
    Plant growth, development, and productivity are adversely affected under drought conditions. Previous findings indicated that 5-aminolevulinic acid (ALA) and 24-epibrassinolide (EBL) play an important role in the plant response to adverse environmental conditions. This study demonstrated the role of ALA and EBL on oxidative stress and photosynthetic capacity of drought-stressed ‘Williams’ banana grown under the Egyptian semi-arid conditions. Exogenous application of either ALA or EBL at concentrations of 15, 30, and 45 mg·L−1 significantly restored plant photosynthetic activity and increased productivity under reduced irrigation; this was equivalent to 75% of the plant’s total water requirements. Both compounds significantly reduced drought-induced oxidative damages by increasing antioxidant enzyme activities (superoxide dismutase ‘SOD’, catalase ‘CAT’, and peroxidase ‘POD’) and preserving chloroplast structure. Lipid peroxidation, electrolyte loss and free non-radical H2O2 formation in the chloroplast were noticeably reduced compared to the control, but chlorophyll content and photosynthetic oxygen evolution were increased. Nutrient uptake, auxin and cytokinin levels were also improved with the reduced abscisic acid levels. The results indicated that ALA and EBL could reduce the accumulation of reactive oxygen species and maintain the stability of the chloroplast membrane structure under drought stress. This study suggests that the use of ALA or EBL at 30 mg·L−1 can promote the growth, productivity and fruit quality of drought-stressed banana plants
    corecore