2 research outputs found

    Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics

    No full text
    Several components are made from Al-Mg-based composites. MoS2 is used to increase the composite’s machinability. Different weight percent (3, 4, and 5) of MoS2 are added as reinforcement to explore the machinability properties of Al-Mg-reinforced composites. The wire cut electrical discharge machining (WEDM) process is used to study the machinability characteristics of the fabricated Al-Mg-MoS2 composite. The machined surface’s roughness and overcut under different process conditions are discussed. The evaluation-based distance from average solution (EDAS) method is used to identify the optimal setting to get the desired surface roughness and overcut. The following WEDM process parameters are taken to determine the impact of peak current, pulse on time, and gap voltage on surface roughness, and overcut. The WEDM tests were carried out on three different reinforced samples to determine the impact of reinforcement on surface roughness and overcut. The surface roughness and overcut increase as the reinforcement level increases, but the optimal parameters for all three composites are the same. According to EDAS analysis, I3, Ton2, and V1 are the best conditions. Furthermore, peak current and pulse on-time significantly influence surface roughness and overcut

    Application of Deep Learning to the Prediction of Solar Irradiance through Missing Data

    No full text
    The task of predicting solar irradiance is critical in the development of renewable energy sources. This research is aimed at predicting the photovoltaic plant’s irradiance or power and serving as a standard for grid stability. In practical situations, missing data can drastically diminish prediction precision. Meanwhile, it is tough to pick an appropriate imputation approach before modeling because of not knowing the distribution of datasets. Furthermore, not all datasets benefit equally from using the same imputation technique. This research suggests utilizing a recurrent neural network (RNN) equipped with an adaptive neural imputation module (ANIM) to estimate direct solar irradiance when some data is missing. Without imputed information, the typical projects’ imminent 4-hour irradiance depends on gaps in antique climatic and irradiation records. The projected model is evaluated on the widely available information by simulating missing data in each input series. The performance model is assessed alternative imputation techniques under a range of missing rates and input parameters. The outcomes prove that the suggested methods perform better than competing strategies when measured by various criteria. Moreover, combine the methodology with the attentive mechanism and invent that it excels in low-light conditions
    corecore