16 research outputs found

    Linking Symptom Inventories using Semantic Textual Similarity

    Full text link
    An extensive library of symptom inventories has been developed over time to measure clinical symptoms, but this variety has led to several long standing issues. Most notably, results drawn from different settings and studies are not comparable, which limits reproducibility. Here, we present an artificial intelligence (AI) approach using semantic textual similarity (STS) to link symptoms and scores across previously incongruous symptom inventories. We tested the ability of four pre-trained STS models to screen thousands of symptom description pairs for related content - a challenging task typically requiring expert panels. Models were tasked to predict symptom severity across four different inventories for 6,607 participants drawn from 16 international data sources. The STS approach achieved 74.8% accuracy across five tasks, outperforming other models tested. This work suggests that incorporating contextual, semantic information can assist expert decision-making processes, yielding gains for both general and disease-specific clinical assessment

    Effects of Severity of Traumatic Brain Injury and Brain Reserve on Cognitive-Control Related Brain Activation

    No full text
    Functional magnetic resonance imaging (fMRI) has revealed more extensive cognitive-control related brain activation following traumatic brain injury (TBI), but little is known about how activation varies with TBI severity. Thirty patients with moderate to severe TBI and 10 with orthopedic injury (OI) underwent fMRI at 3 months post-injury using a stimulus response compatibility task. Regression analyses indicated that lower total Glasgow Coma Scale (GCS) and GCS verbal component scores were associated with higher levels of brain activation. Brain-injured patients were also divided into three groups based upon their total GCS score (3–4, 5–8, or 9–15), and patients with a total GCS score of 8 or less produced increased, diffuse activation that included structures thought to mediate visual attention and cognitive control. The cingulate gyrus and thalamus were among the areas showing greatest increases, and this is consistent with vulnerability of these midline structures in severe, diffuse TBI. Better task performance was associated with higher activation, and there were differences in the over-activation pattern that varied with TBI severity, including greater reliance upon left-lateralized brain structures in patients with the most severe injuries. These findings suggest that over-activation is at least partially effective for improving performance and may be compensatory

    Evaluating the Relationship between Memory Functioning and Cingulum Bundles in Acute Mild Traumatic Brain Injury Using Diffusion Tensor Imaging

    No full text
    Compromised memory functioning is one of the commonly reported cognitive sequelae seen following mild traumatic brain injury (mTBI). Diffusion tensor imaging (DTI) has been shown to be sufficiently sensitive at detecting early microstructural pathological alterations after mTBI. Given its location and shape, the cingulate, which is comprised of the cingulate gyrus (gray matter) and cingulum bundles (white matter), is selectively vulnerable to mTBI. In this study we examined the integrity of cingulum bundles using DTI, and the relationship between cingulum bundles and memory functioning. Twelve adolescents with mTBI and 11 demographically-matched healthy controls were studied. All participants with mTBI had a Glasgow Coma Scale score of 15, and were without intracranial findings on CT scan. Brain scans were performed on average 2.92 days post-injury, and all participants were administered the Verbal Selective Reminding Test (VSRT), an episodic verbal learning and memory task. Participants with mTBI had a significantly lower apparent diffusion coefficient (ADC) bilaterally than controls (p < 0.001). Despite the marginal significance of the group difference in fractional anisotropy (FA), the effect size between groups was moderate (d = 0.66). Cognitively, healthy controls performed better than the TBI group on immediate and delayed recall; however, the difference did not reach statistical significance. In the mTBI group, FA of the left cingulum bundle was significantly correlated with 30-min delayed recall (r = −0.56, p = 0.05). A marginally significant correlation was found between ADC of the left cingulum bundle and the total words of immediate recall (r = 0.59, p = 0.07). No significant correlation was found between DTI metrics and memory functioning for the control group. These preliminary findings indicate that cingulate injury likely contributes to the cognitive sequelae seen during the early phase post-mTBI
    corecore