27 research outputs found
Version 8 IMK/IAA MIPAS measurements of CFC-11, CFC-12, and HCFC-22
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat provided infrared limb emission spectra, which were used to infer global distributions of CFC-11, CFC-12, and HCFC-22. Spectra were analysed using constrained non-linear least squares fitting. Changes with respect to earlier data versions refer to the use of version 8 spectra, the altitude range where the background continuum is considered, details of the regularisation and microwindow selection, and the occasional joint-fitting of interfering species, new spectroscopic data, the joint-fit of a tangent-height dependent spectral offset, and the use of 2D temperature fields. In the lower stratosphere the error budget is dominated by uncertainties in spectroscopic data, while above measurement noise is the leading error source. The vertical resolution of CFC-11 and CFC-12 is 2–3 km near the tropopause, about 4 km at 30 km altitude and 6–10 km at 50 km. The vertical resolution of HCFC-22 is somewhat coarser, 3–4 km at the tropopause and 10–12 km at 35 km altitude. In the altitude range of interest, the horizontal resolution is typically limited by the horizontal sampling of the measurements, not by the smearing of the retrieval. Horizontal information displacement does not exceed 150 km, which can become an issue only for comparisons with model simulations with high horizontal resolution or localised in-situ observations. Along with the regular data product, an alternative representation of the data on a coarser vertical grid is offered. These data can be used without consideration of the averaging kernels. The new data version provides improvement with respect to reduction of biases and improved consistency between the full and reduced resolution mission period of MIPAS
Errors in Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Kinetic Temperature Caused by Non-Local Thermodynamic Equilibrium Model Parameters
The vast set of near global and continuous atmospheric measurements made by the SABER instrument since 2002, including daytime and nighttime kinetic temperature (T(sub k)) from 20 to 105 km, is available to the scientific community. The temperature is retrieved from SABER measurements of the atmospheric 15 micron CO2 limb emission. This emission separates from local thermodynamic equilibrium (LTE) conditions in the rarefied mesosphere and thermosphere, making it necessary to consider the CO2 vibrational state non-LTE populations in the retrieval algorithm above 70 km. Those populations depend on kinetic parameters describing the rate at which energy exchange between atmospheric molecules take place, but some of these collisional rates are not well known. We consider current uncertainties in the rates of quenching of CO2 (v2 ) by N2 , O2 and O, and the CO2 (v2 ) vibrational-vibrational exchange to estimate their impact on SABER T(sub k) for different atmospheric conditions. The T(sub k) is more sensitive to the uncertainty in the latter two and their effects depend on altitude. The T(sub k) combined systematic error due to non-LTE kinetic parameters does not exceed +/- 1.5 K below 95 km and +/- 4-5 K at 100 km for most latitudes and seasons (except for polar summer) if the Tk profile does not have pronounced vertical structure. The error is +/- 3 K at 80 km, +/- 6 K at 84 km and +/- 18 K at 100 km under the less favourable polar summer conditions. For strong temperature inversion layers, the errors reach +/- 3 K at 82 km and +/- 8 K at 90 km. This particularly affects tide amplitude estimates, with errors of up to +/- 3 K
Measurements of global distributions of polar mesospheric clouds during 2005–2012 by MIPAS/Envisat
We have analysed MIPAS (Michelson Interferometer for Passive Atmopheric Sounding) infrared measurements of PMCs for the summer seasons in the Northern (NH) and Southern (SH) hemispheres from 2005 to 2012. Measurements of PMCs using this technique are very useful because they are sensitive to the total ice volume and independent of particle size. For the first time, MIPAS has provided coverage of the PMC total ice volume from midlatitudes to the poles. MIPAS measurements indicate the existence of a continuous layer of mesospheric ice, extending from about ~ 81 km up to about 88–89 km on average and from the poles to about 50–60° in each hemisphere, increasing in concentration with proximity to the poles. We have found that the ice concentration is larger in the Northern Hemisphere than in the Southern Hemisphere. The ratio between the ice water content (IWC) in both hemispheres is also latitudedependent, varying from a NH= SH ratio of 1.4 close to the poles to a factor of 2.1 around 60°. This also implies that PMCs extend to lower latitudes in the NH. A very clear feature of the MIPAS observations is that PMCs tend to be at higher altitudes with increasing distance from the polar region (in both hemispheres), particularly equatorwards of 70°, and that they are about 1 km higher in the SH than in the NH. The difference between the mean altitude of the PMC layer and the mesopause altitude increases towards the poles and is larger in the NH than in the SH. The PMC layers are denser and wider when the frost-point temperature occurs at lower altitudes. The layered water vapour structure caused by sequestration and sublimation of PMCs is present at latitudes northwards of 70° N and more pronounced towards the pole. Finally, MIPAS observations have also shown a clear impact of the migrating diurnal tide on the diurnal variation of the PMC volume ice density
The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements
As part of the second SPARC (Stratosphere–troposphere Processes And their
Role in Climate) water vapor assessment (WAVAS-II), we present measurements
taken from or coincident with seven sites from which ground-based
microwave instruments measure water vapor in the middle atmosphere. Six of
the ground-based instruments are part of the Network for the Detection of
Atmospheric Composition Change (NDACC) and provide datasets that can be
used for drift and trend assessment. We compare measurements from these
ground-based instruments with satellite datasets that have provided
retrievals of water vapor in the lower mesosphere over extended periods
since 1996.
We first compare biases between the satellite and ground-based instruments
from the upper stratosphere to the upper mesosphere. We then show a number
of time series comparisons at 0.46 hPa, a level that is sensitive to changes
in H2O and CH4 entering the stratosphere but, because almost all
CH4 has been oxidized, is relatively insensitive to dynamical
variations. Interannual variations and drifts are investigated with
respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and
each instrument's climatological mean. We find that the
variation in the interannual difference in the mean H2O measured by any
two instruments is typically ∼ 1%. Most of the datasets
start in or after 2004 and show annual increases in H2O of
0–1 % yr−1. In particular, MLS shows a trend of between 0.5 % yr−1 and
0.7 % yr−1 at the comparison sites. However, the two longest measurement
datasets used here, with measurements back to 1996, show much smaller trends
of +0.1 % yr−1 (at Mauna Loa, Hawaii) and −0.1 % yr−1 (at Lauder, New
Zealand)
Polarized blazar X-rays imply particle acceleration in shocks
Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization—the only range available until now—probe extended regions of the jet containing particles that left the acceleration site days to years earlier1,2,3, and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree ΠX of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock
Discovery of X-ray polarization angle rotation in active galaxy Mrk 421
The magnetic field conditions in astrophysical relativistic jets can be
probed by multiwavelength polarimetry, which has been recently extended to
X-rays. For example, one can track how the magnetic field changes in the flow
of the radiating particles by observing rotations of the electric vector
position angle . Here we report the discovery of a
rotation in the X-ray band in the blazar Mrk 421 at an average flux state.
Across the 5 days of Imaging X-ray Polarimetry Explorer (IXPE) observations of
4-6 and 7-9 June 2022, rotated in total by .
Over the two respective date ranges, we find constant, within uncertainties,
rotation rates ( and ) and polarization
degrees (). Simulations of a random walk of the
polarization vector indicate that it is unlikely that such rotation(s) are
produced by a stochastic process. The X-ray emitting site does not completely
overlap the radio/infrared/optical emission sites, as no similar rotation of
was observed in quasi-simultaneous data at longer wavelengths. We
propose that the observed rotation was caused by a helical magnetic structure
in the jet, illuminated in the X-rays by a localized shock propagating along
this helix. The optically emitting region likely lies in a sheath surrounding
an inner spine where the X-ray radiation is released
X-ray Polarization Observations of BL Lacertae
Blazars are a class of jet-dominated active galactic nuclei with a typical
double-humped spectral energy distribution. It is of common consensus the
Synchrotron emission to be responsible for the low frequency peak, while the
origin of the high frequency hump is still debated. The analysis of X-rays and
their polarization can provide a valuable tool to understand the physical
mechanisms responsible for the origin of high-energy emission of blazars. We
report the first observations of BL Lacertae performed with the Imaging X-ray
Polarimetry Explorer ({IXPE}), from which an upper limit to the polarization
degree 12.6\% was found in the 2-8 keV band. We contemporaneously
measured the polarization in radio, infrared, and optical wavelengths. Our
multiwavelength polarization analysis disfavors a significant contribution of
proton synchrotron radiation to the X-ray emission at these epochs. Instead, it
supports a leptonic origin for the X-ray emission in BL Lac.Comment: 17 pages, 5 figures, accepted for publication in ApJ
Enabling planetary science across light-years. Ariel Definition Study Report
Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century