15 research outputs found

    Pathobiological Relationship of Excessive Dietary Intake of Choline/L-Carnitine: A TMAO Precursor-Associated Aggravation in Heart Failure in Sarcopenic Patients

    No full text
    The microecological environment of the gastrointestinal tract is altered if there is an imbalance between the gut microbiota phylases, resulting in a variety of diseases. Moreover, progressive age not only slows down physical activity but also reduces the fat metabolism pathway, which may lead to a reduction in the variety of bacterial strains and bacteroidetes’ abundance, promoting firmicutes and proteobacteria growth. As a result, dysbiosis reduces physiological adaptability, boosts inflammatory markers, generates ROS, and induces the destruction of free radical macromolecules, leading to sarcopenia in older patients. Research conducted at various levels indicates that the microbiota of the gut is involved in pathogenesis and can be considered as the causative agent of several cardiovascular diseases. Local and systematic inflammatory reactions are caused in patients with heart failure, as ischemia and edema are caused by splanchnic hypoperfusion and enable both bacterial metabolites and bacteria translocation to enter from an intestinal barrier, which is already weakened, to the blood circulation. Multiple diseases, such as HF, include healthy microbe-derived metabolites. These key findings demonstrate that the gut microbiota modulates the host’s metabolism, either specifically or indirectly, by generating multiple metabolites. Currently, the real procedures that are an analogy to the symptoms in cardiac pathologies, such as cardiac mass dysfunctions and modifications, are investigated at a minimum level in older patients. Thus, the purpose of this review is to summarize the existing knowledge about a particular diet, including trimethylamine, which usually seems to be effective for the improvement of cardiac and skeletal muscle, such as choline and L-carnitine, which may aggravate the HF process in sarcopenic patients

    Formulation of Miconazole-Loaded Chitosan–Carbopol Vesicular Gel: Optimization to In Vitro Characterization, Irritation, and Antifungal Assessment

    No full text
    Miconazole nitrate (MN) is a poorly water-soluble and antifungal drug used for fungal infections. The present research work was designed to develop topical MN-loaded bilosomes (BSs) for the improvement of therapeutic efficacy. MZBSs were prepared by using the thin-film hydration method and further optimized by using the Box–Behnken statistical design (BBD). The optimized miconazole bilosome (MZBSo) showed nano-sized vesicles, a low polydispersity index, a high entrapment efficiency, and zeta potential. Further, MZBSo was incorporated into the gel using carbopol 934P and chitosan polymers. The selected miconazole bilosome gel (MZBSoG2) demonstrated an acceptable pH (6.4 ± 0.1), viscosity (1856 ± 21 cP), and spreadability (6.6 ± 0.2 cm2). Compared to MZBSo (86.76 ± 3.7%), MZBSoG2 showed a significantly (p Candida albicans and Aspergillus niger. The stability study results showed no significant changes after stability testing under accelerated conditions. MZ-loaded gels could serve as effective alternative carriers for improving therapeutic efficacy

    Formulation of Miconazole-Loaded Chitosan–Carbopol Vesicular Gel: Optimization to In Vitro Characterization, Irritation, and Antifungal Assessment

    No full text
    Miconazole nitrate (MN) is a poorly water-soluble and antifungal drug used for fungal infections. The present research work was designed to develop topical MN-loaded bilosomes (BSs) for the improvement of therapeutic efficacy. MZBSs were prepared by using the thin-film hydration method and further optimized by using the Box–Behnken statistical design (BBD). The optimized miconazole bilosome (MZBSo) showed nano-sized vesicles, a low polydispersity index, a high entrapment efficiency, and zeta potential. Further, MZBSo was incorporated into the gel using carbopol 934P and chitosan polymers. The selected miconazole bilosome gel (MZBSoG2) demonstrated an acceptable pH (6.4 ± 0.1), viscosity (1856 ± 21 cP), and spreadability (6.6 ± 0.2 cm2). Compared to MZBSo (86.76 ± 3.7%), MZBSoG2 showed a significantly (p < 0.05) slower drug release (58.54 ± 4.1%). MZBSoG2 was found to be a non-irritant because it achieved a score of zero (standard score) in the HET-CAM test. It also exhibited significant antifungal activity compared to pure MZ against Candida albicans and Aspergillus niger. The stability study results showed no significant changes after stability testing under accelerated conditions. MZ-loaded gels could serve as effective alternative carriers for improving therapeutic efficacy

    UV Blocking and Oxygen Barrier Coatings Based on Polyvinyl Alcohol and Zinc Oxide Nanoparticles for Packaging Applications

    No full text
    Photodegradation and oxidation are major causes of the deterioration of food, resulting in darkening, off-flavors, and nutrient deficiency. To reduce this problem, novel functional polymeric materials are being developed to retain food’s light sensitivity. Nanofillers are also used in a polymeric film to produce effective UV blockings and oxygen barrier coatings so that the degradation of the food can be delayed, thereby increasing the shelf life. For this purpose, polyvinyl alcohol coatings were prepared by the incorporation of ZnO nanoparticles. Polyvinyl alcohol is a naturally excellent barrier against oxygen, and the addition of ZnO particles at the nanoscale size has demonstrated effective UV blocking capabilities. In this work, the hydrothermal technique is used to produce ZnO nanoparticles, and these produced particles are then incorporated into the polyvinyl alcohol to produce thin films. These films are characterized in terms of the compositional, macroscopic, microscopic, and optical properties via X-ray diffraction (XRD), FTIR, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA), as well as UV–VIS spectroscopy. ZnO nanoparticles at different concentrations were incorporated into the PVA solution, and the films were processed via the blade coating method. With the addition of ZnO, the oxygen transmission rate (OTR) of pure PVA was not altered and remained stable, and the lowest OTR was recorded as 0.65 cm3/m2·day·bar. Furthermore, the addition of ZnO increased the water contact angle (WCA) of PVA, and the highest WCA was recorded to be around more than 70°. Due to this, water permeability decreased. Additionally, PVA/ZnO films were highly flexible and bendable and maintained the OTR even after going through bending cycles of 20K. Furthermore, the addition of ZnO showed a significant UV blocking effect and blocked the rays below a wavelength of 380 nm. Finally, the optimized films were used for packaging applications, and it was observed that the packaged apple remained fresh and unoxidized for a longer period as compared with the piece of apple without packaging. Thus, based on these results, the PVA/ZnO films are ideally suited for packaging purposes and can effectively enhance the shelf life of food

    Formulation and Optimization of Nano Lipid Based Oral Delivery Systems for Arthritis

    No full text
    Rheumatoid arthritis is an autoimmune disease characterized by chronic synovitis that leads to tissue dysfunction as well as loss of complete function. There are several synthetic NSAIDs, glucocorticoids and biological drugs that are commonly used to treat arthritis. These drugs have severe life-threatening side effects. The use of a bioactive compound (Apigenin) could be an alternative to synthetic conventional delivery systems. It is a poorly water-soluble drug having a wide range of pharmacological activities. It has been reported for potential anti-inflammatory and anti-arthritic activity. In the present study, Apigenin (APG) solid lipid nanoparticles were prepared using the solid lipid (glyceryl mono stearate, GMS), surfactant (d -α-Tocopheryl polyethylene glycol 1000 succinate, TPGS) and sonication time (ST). The optimized APG SLNs showed a particle size of 161.7 nm and encapsulation efficiency of 80.44 ± 4.11%. It was further coated with 0.1% w/v chitosan (APG-CH-SLNs) and showed the particle size, PDI and zeta potential of 185.4 nm, 0.45 + 26.7 mV, respectively. The significant (p < 0.001) enhancement in drug release, permeation and mucoadhesive study was observed after chitosan coating. The antioxidant study results depicted an increase in antioxidant property. Finally, the anti-arthritic biochemical parameters revealed marked changes in the results in comparison to arthritic control animals. From the study, it was concluded that APG-loaded mucoadhesive lipid nanoparticles are an alternative to the synthetic oral delivery systems

    Harnessing Lipid Polymer Hybrid Nanoparticles for Enhanced Oral Bioavailability of Thymoquinone: In Vitro and In Vivo Assessments

    No full text
    The clinical application of phytochemicals such as thymoquinone (THQ) is restricted due to their limited aqueous solubility and oral bioavailability. Developing mucoadhesive nanocarriers to deliver these natural compounds might provide new hope to enhance their oral bioavailability. Herein, this investigation aimed to develop THQ-loaded lipid-polymer hybrid nanoparticles (THQ-LPHNPs) based on natural polymer chitosan. THQ-LPHNPs were fabricated by the nanoprecipitation technique and optimized by the 3-factor 3-level Box–Behnken design. The optimized LPHNPs represented excellent properties for ideal THQ delivery for oral administration. The optimized THQ-LPHNPs revealed the particles size (PS), polydispersity index (PDI), entrapment efficiency (%EE), and zeta potential (ZP) of 85%, and >25 mV, respectively. THQ-LPHNPs represented excellent stability in the gastrointestinal milieu and storage stability in different environmental conditions. THQ-LPHNPs represented almost similar release profiles in both gastric as well as intestinal media with the initial fast release for 4 h and after that a sustained release up to 48 h. Further, the optimized THQ-LPHNPs represent excellent mucin binding efficiency (>70%). Cytotoxicity study revealed much better anti-breast cancer activity of THQ-LPHNPs compared with free THQ against MDA-MB-231 and MCF-7 breast cancer cells. Moreover, ex vivo experiments revealed more than three times higher permeation from the intestine after THQ-LPHNPs administration compared to the conventional THQ suspension. Furthermore, the THQ-LPHNPs showed 4.74-fold enhanced bioavailability after oral administration in comparison with the conventional THQ suspension. Therefore, from the above outcomes, mucoadhesive LPHNPs might be suitable nano-scale carriers for enhanced oral bioavailability and therapeutic efficacy of highly lipophilic phytochemicals such as THQ

    The Ameliorative Role of Hibiscetin against High-Fat Diets and Streptozotocin-Induced Diabetes in Rodents via Inhibiting Tumor Necrosis Factor-α, Interleukin-1β, and Malondialdehyde Level

    No full text
    Hibiscetin, as one of the main bioactive constituents of Hibiscus sabdariffa, has many pharmacological activities, but its antihyperglycemic activity has not been fully interpreted yet. The current research was developed from this perspective. The study intended to appraise the antidiabetic capability of hibiscetin in a high-fat diet (HFD) and streptozotocin (STZ; 50 mg/kg, intraperitoneally)-induced diabetes in an experimental animal. The efficiency of hibiscetin at 10 mg/kg in an “HFD/STZ model” remedy in rats with experimentally caused diabetes was explored for 42 days. The efficacy of hibiscetin was observed on several diabetes parameters. The average body weight and an array of biochemical markers were determined, including blood glucose, insulin, total protein (TP), lipid profile, aspartate aminotransferase (AST), alanine aminotransferase (ALT), IL-6, IL-1β, tumor necrosis factor-α (TNF-α), adiponectin, leptin, resistin, malondialdehyde (MDA), catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD). The antidiabetic benefits of hibiscetin were proven by a substantial reduction in blood glucose, lipid profile (TC and TG), total protein, IL-6, IL-1β, MDA, TNF-α, leptin, adiponectin, ALT, and AST in the therapy group compared to the diabetic disease standard. Furthermore, hibiscetin therapy also reversed the lowered levels of insulin, resistin, GSH, SOD, and CAT in diabetic rats. It was determined that hibiscetin may be beneficial in terms of reducing diabetes problems due to its effects on both oxidative stress and inflammation and that more research for this design should be conducted

    Rosinidin Protects against Cisplatin-Induced Nephrotoxicity via Subsiding Proinflammatory and Oxidative Stress Biomarkers in Rats

    No full text
    Background: Rosinidin is a flavonoid anthocyanin pigmentation found in shrub flowers such as Catharanthus roseus and Primula rosea. The molecular docking studies predicted that rosinidin has adequate structural competency, making it a viable medicinal candidate for the treatment of a wide range of disorders. The current study intends to assess rosinidin nephroprotective efficacy against nephrotoxicity induced by cisplatin in rats. Materials and Methods: Oral acute toxicity tests of rosinidin were conducted to assess potential toxicity in animals, and it was shown to be safe. The nephroprotective effect of rosinidin 10, and 20 mg/kg were tested in rats for 25 days with concurrent administration of cisplatin. Several biochemical parameters were measured to support enzymatic and non-enzymatic oxidative stress such as superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH). Likewise, changes in several non-protein-nitrogenous components and blood chemistry parameters were made to support the theory linked with the pathogenesis of chemical-induced nephrotoxicity. Results: Cisplatin caused significant changes in biochemical, enzymatic, and blood chemistry, which rosinidin efficiently controlled. Conclusions: The present investigation linked rosinidin with nephroprotective efficacy in experimental models

    Exploring the Heterocatalytic Proficiencies of ZnO Nanostructures in the Simultaneous Photo-Degradation of Chlorophenols

    No full text
    The development of innovative technology for effective pollutant degradation is becoming more important as a result of major environmental issues. Here, ZnO nanoparticles were synthesized using facile and aqueous chemical growth routes. Analytical techniques such as scanning electron micrographs (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Zeta Seizer (ZS), and Zeta Potential were used to analyze the resultant nanoparticles (ZP). The ZnO reveals a nanocluster texture that has a medium scale of 27 nm and a surface charge (17 ± 3 mV) with a wurtzite phase and crystalline nature. Photo catalysts have a higher potential for the thermal disposal of chlorophenols pollutants due to their low cost and simple synthesis procedure. The as-prepared sample underwent photocatalysis for the simultaneous photo-degradation of PCP and TCP as a model dye under sunlight. The ZnO nanostructure exhibited an exceptional degradation of around 85–90% for PCP and TCP in the aqua liquid, with the lowest amount of catalyst dosage of 240–250 μg individually and simultaneously, over 3 min beneath the sun ray. The greater productivity of the ZnO nanostructure for natural deterioration during solar irradiation indicates that the aqueous chemical growth enables the creation of effective and affordable photocatalysts for the photodegradation of a variety of environmental contaminants
    corecore