2,411 research outputs found
Expert system for controlling plant growth in a contained environment
In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an "expert system" which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the "expert system" remotely, to assess activity within the growth chamber, and can override the "expert system"
Expert system for controlling plant growth in a contained environment
In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an ''expert system'' which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the ''expert system'' remotely, to assess activity within the growth chamber, and can override the ''expert system''
Global Properties of Neutral Hydrogen in Compact Groups
Compact groups of galaxies provide a unique environment to study the
evolution of galaxies amid frequent gravitational encounters. These nearby
groups have conditions similar to those in the earlier universe when galaxies
were assembled and give us the opportunity to witness hierarchical formation in
progress. To understand how the compact group environment affects galaxy
evolution, we examine the gas and dust in these groups. We present new
single-dish GBT neutral hydrogen (HI) observations of 30 compact groups and
define a new way to quantify the group HI content as the HI-to-stellar mass
ratio of the group as a whole. We compare the HI content with mid-IR indicators
of star formation and optical [g-r] color to search for correlations between
group gas content and star formation activity of individual group members.
Quiescent galaxies tend to live in HI-poor groups, and galaxies with active
star formation are more commonly found in HI-rich groups. Intriguingly, we also
find "rogue" galaxies whose star formation does not correlate with group HI
content. In particular, we identify three galaxies (NGC 2968 in RSCG 34, KUG
1131+202A in RSCG 42, and NGC 4613 in RSCG 64) whose mid-IR activity is
discrepant with the HI. We speculate that this mismatch between mid-IR activity
and HI content is a consequence of strong interactions in this environment that
can strip HI from galaxies and abruptly affect star-formation. Ultimately,
characterizing how and on what timescales the gas is processed in compact
groups will help us understand the interstellar medium in complex, dense
environments similar to the earlier Universe.Comment: Accepted to A
Using Light Charged Particles to Probe the Asymmetry Dependence of the Nuclear Caloric Curve
Recently, we observed a clear dependence of the nuclear caloric curve on
neutron-proton asymmetry through examination of fully
reconstructed equilibrated quasi-projectile sources produced in heavy ion
collisions at E/A = 35 MeV. In the present work, we extend our analysis using
multiple light charged particle probes of the temperature. Temperatures are
extracted with five distinct probes using a kinetic thermometer approach.
Additionally, temperatures are extracted using two probes within a chemical
thermometer approach (Albergo method). All seven measurements show a
significant linear dependence of the source temperature on the source
asymmetry. For the kinetic thermometer, the strength of the asymmetry
dependence varies with the probe particle species in a way which is consistent
with an average emission-time ordering.Comment: 7 pages, 4 figure
Associations of mortality with own blood pressure using son's blood pressure as an instrumental variable
Peer reviewe
The Ursinus Weekly, April 17, 1908
Baseball • The Dean\u27s column • The young ladies entertain • Benefit social • Schaff prize debate • Literary societies • Second team game • College world • Personals • Literary Supplement: St. Valentine at Olevia; An adventure; Eugene Field; The present financial crisis; Railway rate regulation; James Russel Lowellhttps://digitalcommons.ursinus.edu/weekly/2904/thumbnail.jp
An Atlas of Warm AGN and Starbursts from the IRAS Deep Fields
We present 180 AGN candidates based on color selection from the IRAS
slow-scan deep observations, with color criteria broadened from the initial
Point-Source Catalog samples to include similar objects with redshifts up to
z=1 and allowing for two-band detections. Spectroscopic identifications have
been obtained for 80 (44%); some additional ones are secure based on radio
detections or optical morphology, although yet unobserved spectroscopically.
These spectroscopic identifications include 13 Sy 1 galaxies, 17 Sy 2 Seyferts,
29 starbursts, 7 LINER systems, and 13 emission-line galaxies so heavily
reddened as to remain of ambiguous classification. The optical magnitudes range
from R=12.0-20.5; counts suggest that incompleteness is important fainter than
R=15.5. Redshifts extend to z=0.51, with a significant part of the sample at
z>0.2. The sample includes slightly more AGN than star-forming systems among
those where the spectra contain enough diagnostic feature to make the
distinction. The active nuclei include several broad-line objects with strong
Fe II emission, and composite objects with the absorption-line signatures of
fading starbursts. These AGN with warm far-IR colors have little overlap with
the "red AGN" identified with 2MASS; only a single Sy 1 was detected by 2MASS
with J-K > 2. Some reliable IRAS detections have either very faint optical
counterparts or only absorption-line galaxies, potentially being deeply
obscured AGN. The IRAS detections include a newly identified symbiotic star,
and several possible examples of the "Vega phenomenon", including dwarfs as
cool as type K. Appendices detail these candidate stars, and the
optical-identification content of a particularly deep set of high-latitude IRAS
scans (probing the limits of optical identification from IRAS data alone).Comment: ApJ Suppl, in press. Figures converted to JPEG/GIF for better
compression; PDF with full-resolution figures available before publication at
http://www.astr.ua.edu/keel/aoagn.pd
Computing Cutting Time in Turning Operation Based on AutoCAD Drawings.
In view of importance the cutting time, it is considered one of the most important factors in different machining processes where it affects production time, cycle time, and product cost consequently. This research aims to build up a system for computing cutting time in turning operations from AutoCAD drawings. The
proposed system has been built using Visual Basic programming language and interfacing it with AutoCAD by Visual Basic for Application (VBA) Technique. The system is able to compute cutting time from the drawings according to the color of each solid entity; these colors were defined previously in the system.
They are related to the type of turning operation (external, internal, and facing turning operations) as well as the rough and
finish machining operations. The system was examined with two models, and it was accurate and efficient. It is possible consideration the
proposed system step toward the integration between CAPP/CAM system
Perovskite-perovskite tandem photovoltaics with optimized bandgaps
We demonstrate four and two-terminal perovskite-perovskite tandem solar cells
with ideally matched bandgaps. We develop an infrared absorbing 1.2eV bandgap
perovskite, , that can deliver 14.8 %
efficiency. By combining this material with a wider bandgap
material, we reach monolithic two
terminal tandem efficiencies of 17.0 % with over 1.65 volts open-circuit
voltage. We also make mechanically stacked four terminal tandem cells and
obtain 20.3 % efficiency. Crucially, we find that our infrared absorbing
perovskite cells exhibit excellent thermal and atmospheric stability,
unprecedented for Sn based perovskites. This device architecture and materials
set will enable 'all perovskite' thin film solar cells to reach the highest
efficiencies in the long term at the lowest costs
- …