12,127 research outputs found

    Spacecraft attitude detection system by stellar reference Patent

    Get PDF
    Attitude detection system using stellar references for three-axis control and spin stabilized spacecraf

    Stability of Multiplanetary Systems in Star Clusters

    Full text link
    Most stars form in star clusters and stellar associated. To understand the roles of star cluster environments in shaping the dynamical evolution of planetary systems, we carry out direct NN-body simulations of four planetary systems models in three different star cluster environments with respectively N=2k, 8k and 32k stars. In each cluster, an ensemble of initially identical planetary systems are assigned to solar-type stars with ∼1M⊙\sim 1 M_{\odot} and evolved for 50~Myr. We found that following the depletion of protoplanetary disks, external perturbations and planet-planet interactions are two driving mechanisms responsible for the destabilization of planetary systems. The planet survival rate varies from ∼95%\sim 95\% in the N=2k cluster to ∼60%\sim 60\% in the N=32k cluster, which suggests that most planetary systems can indeed survive in low-mass clusters, except in the central regions. We also find that planet ejections through stellar encounters are cumulative processes, as only ∼3%\sim 3\% of encounters are strong enough to excite the eccentricity by Δe≥0.5\Delta e \geq 0.5. Short-period planets can be perturbed through orbit crossings with long-period planets. When taking into account planet-planet interactions, the planet ejection rate nearly doubles, and therefore multiplicity contributes to the vulnerability of planetary systems. In each ensemble, ∼0.2%\sim 0.2\% of planetary orbits become retrograde due to random directions of stellar encounters. Our results predict that young low-mass star clusters are promising sites for next-generation planet surveys, yet low planet detection rates are expected in dense globular clusters such as 47 Tuc. Nevertheless, planets in denser stellar environments are likely to have shorter orbital periods, which enhances their detectability.Comment: 19 pages, 13 figures, 4 tables, accepted for publication in MNRA

    Generalized Jarzynski Equality under Nonequilibrium Feedback Control

    Full text link
    The Jarzynski equality is generalized to situations in which nonequilibrium systems are subject to a feedback control. The new terms that arise as a consequence of the feedback describe the mutual information content obtained by measurement and the efficacy of the feedback control. Our results lead to a generalized fluctuation-dissipation theorem that reflects the readout information, and can be experimentally tested using small thermodynamic systems. We illustrate our general results by an introducing "information ratchet," which can transport a Brownian particle in one direction and extract a positive work from the particle

    Studying Migrant Assimilation Through Facebook Interests

    Full text link
    Migrants' assimilation is a major challenge for European societies, in part because of the sudden surge of refugees in recent years and in part because of long-term demographic trends. In this paper, we use Facebook's data for advertisers to study the levels of assimilation of Arabic-speaking migrants in Germany, as seen through the interests they express online. Our results indicate a gradient of assimilation along demographic lines, language spoken and country of origin. Given the difficulty to collect timely migration data, in particular for traits related to cultural assimilation, the methods that we develop and the results that we provide open new lines of research that computational social scientists are well-positioned to address.Comment: Accepted as a short paper at Social Informatics 2018 (https://socinfo2018.hse.ru/). Please cite the SocInfo versio

    Effective Medium Theory of Filamentous Triangular Lattice

    Get PDF
    We present an effective medium theory that includes bending as well as stretching forces, and we use it to calculate mechanical response of a diluted filamentous triangular lattice. In this lattice, bonds are central-force springs, and there are bending forces between neighboring bonds on the same filament. We investigate the diluted lattice in which each bond is present with a probability pp. We find a rigidity threshold pbp_b which has the same value for all positive bending rigidity and a crossover characterizing bending-, stretching-, and bend-stretch coupled elastic regimes controlled by the central-force rigidity percolation point at pCF≃2/3p_{\textrm{CF}} \simeq 2/3 of the lattice when fiber bending rigidity vanishes.Comment: 15 pages, 9 figure

    Neutrino Bremsstrahlung Process in highly degenerate magnetized electron gas

    Full text link
    In this article the neutrino bremsstrahlung process is considered in presence of strong magnetic field, though the calculations for this process in absence of magnetic field are also carried out simultaneously. The electrons involved in this process are supposed to be highly degenerate and relativistic. The scattering cross sections and energy loss rates for both cases, in presence and absence of magnetic field, are calculated in the extreme-relativistic limit. Two results are compared in the range of temperature 5.9×1095.9\times 10^{9} K <T≤1011< T\leq 10^{11} K and magnetic field 1014−101610^{14} - 10^{16} G at a fixed density ∼1015\sim 10^{15} gm/ccgm/cc, a typical environment during the cooling of magnetized neutron star. The interpretation of our result is briefly discussed and the importance of this process during the stellar evolution is speculated.Comment: 12 pages including 2 figures and 1 tabl

    Exactly solvable models of adaptive networks

    Full text link
    A satisfiability (SAT-UNSAT) transition takes place for many optimization problems when the number of constraints, graphically represented by links between variables nodes, is brought above some threshold. If the network of constraints is allowed to adapt by redistributing its links, the SAT-UNSAT transition may be delayed and preceded by an intermediate phase where the structure self-organizes to satisfy the constraints. We present an analytic approach, based on the recently introduced cavity method for large deviations, which exactly describes the two phase transitions delimiting this adaptive intermediate phase. We give explicit results for random bond models subject to the connectivity or rigidity percolation transitions, and compare them with numerical simulations.Comment: 4 pages, 4 figure

    On the dependence of the avalanche angle on the granular layer thickness

    Full text link
    A layer of sand of thickness h flows down a rough surface if the inclination is larger than some threshold value theta which decreases with h. A tentative microscopic model for the dependence of theta with h is proposed for rigid frictional grains, based on the following hypothesis: (i) a horizontal layer of sand has some coordination z larger than a critical value z_c where mechanical stability is lost (ii) as the tilt angle is increased, the configurations visited present a growing proportion $_s of sliding contacts. Instability with respect to flow occurs when z-z_s=z_c. This criterion leads to a prediction for theta(h) in good agreement with empirical observations.Comment: 6 pages, 2 figure
    • …
    corecore