136 research outputs found

    Generalized Gravi-Electromagnetism

    Full text link
    A self consistant and manifestly covariant theory for the dynamics of four charges (masses) (namely electric, magnetic, gravitational, Heavisidian) has been developed in simple, compact and consistent manner. Starting with an invariant Lagrangian density and its quaternionic representation, we have obtained the consistent field equation for the dynamics of four charges. It has been shown that the present reformulation reproduces the dynamics of individual charges (masses) in the absence of other charge (masses) as well as the generalized theory of dyons (gravito - dyons) in the absence gravito - dyons (dyons). key words: dyons, gravito - dyons, quaternion PACS NO: 14.80H

    The Influence of the effect of solute on the thermodynamic driving force on grain refinement of Al alloys

    Get PDF
    Grain refinement is known to be strongly affected by the solute in cast alloys. Addition of some solute can reduce grain size considerably while others have a limited effect. This is usually attributed to the constitutional supercooling which is quantified by the growth restriction factor, Q. However, one factor that has not been considered is whether different solutes have differing effects on the thermodynamic driving force for solidification. This paper reveals that addition of solute reduces the driving force for solidification for a given undercooling, and that for a particular Q value, it is reduced more substantially when adding eutectic-forming solutes than peritectic-forming elements. Therefore, compared with the eutectic-forming solutes, addition of peritectic-forming solutes into Al alloys not only possesses a higher initial nucleation rate resulted from the larger thermodynamic driving force for solidification, but also promotes nucleation within the constitutionally supercooled zone during growth. As subsequent nucleation can occur at smaller constitutional supercoolings for peritectic-forming elements, a smaller grain size is thus produced. The very small constitutional supercooling required to trigger subsequent nucleation in alloys containing Ti is considered as a major contributor to its extraordinary grain refining efficiency in cast Al alloys even without the deliberate addition of inoculants.The Australian Research Council (ARC DP10955737)

    Dimensionless cosmology

    Full text link
    Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant GG is entirely dimensionful. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of Big Bang Neucleosynthesis and recombination in a dimensionless manner. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any {\it one} of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding GG to the usual cosmological parameter set

    Early carboniferous brachiopod faunas from the Baoshan block, west Yunnan, southwest China

    Full text link
    38 brachiopod species in 27 genera and subgenera are described from the Yudong Formation in the Shidian-Baoshan area, west Yunnan, southwest China. New taxa include two new subgenera: Unispirifer (Septimispirifer) and Brachythyrina (Longathyrina), and seven new species: Eomarginifera yunnanensis, Marginatia cylindrica, Unispirifer (Unispirifer) xiangshanensis, Unispirifer (Septimispirifer) wafangjieensis, Brachythyrina (Brachythyrina) transversa, Brachythyrina (Longathyrina) baoshanensis, and Girtyella wafangjieensis. Based on the described material and constraints from associated coral and conodont faunas, the age of the brachiopod fauna from the Yudon Formation is considered late Tournaisian (Early Carboniferous), with a possibility extending into earlyViseacutean.<br /

    The prevalence of mild cognitive impairment in diverse geographical and ethnocultural regions: The COSMIC Collaboration

    Get PDF
    Background Changes in criteria and differences in populations studied and methodology have produced a wide range of prevalence estimates for mild cognitive impairment (MCI). Methods Uniform criteria were applied to harmonized data from 11 studies from USA, Europe, Asia and Australia, and MCI prevalence estimates determined using three separate definitions of cognitive impairment. Results The published range of MCI prevalence estimates was 5.0%-36.7%. This was reduced with all cognitive impairment definitions: performance in the bottom 6.681% (3.2%-10.8%); Clinical Dementia Rating of 0.5 (1.8%-14.9%); Mini-Mental State Examination score of 24-27 (2.1%-20.7%). Prevalences using the first definition were 5.9% overall, and increased with age (P < .001) but were unaffected by sex or the main races/ethnicities investigated (Whites and Chinese). Not completing high school increased the likelihood of MCI (P = .01). Conclusion Applying uniform criteria to harmonized data greatly reduced the variation in MCI prevalence internationally

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants
    corecore