62 research outputs found
A smoothing monotonic convergent optimal control algorithm for NMR pulse sequence design
The past decade has demonstrated increasing interests in using optimal
control based methods within coherent quantum controllable systems. The
versatility of such methods has been demonstrated with particular elegance
within nuclear magnetic resonance (NMR) where natural separation between
coherent and dissipative spin dynamics processes has enabled coherent quantum
control over long periods of time to shape the experiment to almost ideal
adoption to the spin system and external manipulations. This has led to new
design principles as well as powerful new experimental methods within magnetic
resonance imaging, liquid-state and solid-state NMR spectroscopy. For this
development to continue and expand, it is crucially important to constantly
improve the underlying numerical algorithms to provide numerical solutions
which are optimally compatible with implementation on current instrumentation
and at same time are numerically stable and offer fast monotonic convergence
towards the target. Addressing such aims, we here present a smoothing
monotonically convergent algorithm for pulse sequence design in magnetic
resonance which with improved optimization stability lead to smooth pulse
sequence easier to implement experimentally and potentially understand within
the analytical framework of modern NMR spectroscopy
Spherical means-based free-water volume fraction from diffusion MRI increases non-linearly with age in the white matter of the healthy human brain
Producción CientíficaThe term free-water volume fraction (FWVF) refers to the signal fraction that could be found as the cerebrospinal fluid of the brain, which has been demonstrated as a sensitive measure that correlates with cognitive performance and various neuropathological processes. It can be quantified by properly fitting the isotropic component of the magnetic resonance (MR) signal in diffusion-sensitized sequences. Using healthy subjects (178F/109M) aged 25-94, this study examines in detail the evolution of the FWVF obtained with the spherical means technique from multi-shell acquisitions in the human brain white matter across the adult lifespan, which has been previously reported to exhibit a positive trend when estimated from single-shell data using the bi-tensor signal representation. We found evidence of a noticeably non-linear gain after the sixth decade of life, with a region-specific variate and varying change rate of the spherical means-based multi-shell FWVF parameter with age, at the same time, a heteroskedastic pattern across the adult lifespan is suggested. On the other hand, the FW corrected diffusion tensor imaging (DTI) leads to a region-dependent flattened age-related evolution of the mean diffusivity (MD) and fractional anisotropy (FA), along with a considerable reduction in their variability, as compared to the studies conducted over the standard (single-component) DTI. This way, our study provides a new perspective on the trajectory-based assessment of the brain and explains the conceivable reason for the variations observed in FA and MD parameters across the lifespan with previous studies under the standard diffusion tensor imaging.Ministerio de Ciencia e Innovación (MCIN-AEI) y FEDER-UE (grant PID2021-124407NB-I00)Ministerio de Ciencia e Innovación (MCIN-AEI) - Unión Europea “NextGenerationEU/PRTR” (grant TED2021-130758B-I00)Ministry of Science and Higher Education (Poland) - Bekker programme (grant PPN/BEK/2019/1/00421)Norwegian ExtraFoundation for Health and Rehabilitation (2015/FO5146)European Union's Horizon 2020 research and Innovation program (ERC 802998
Bio-psycho-social factors’ associations with brain age: a large-scale UK Biobank diffusion study of 35,749 participants
Brain age refers to age predicted by brain features. Brain age has previously been associated with various health and disease outcomes and suggested as a potential biomarker of general health. Few previous studies have systematically assessed brain age variability derived from single and multi-shell diffusion magnetic resonance imaging data. Here, we present multivariate models of brain age derived from various diffusion approaches and how they relate to bio-psycho-social variables within the domains of sociodemographic, cognitive, life-satisfaction, as well as health and lifestyle factors in midlife to old age (N = 35,749, 44.6–82.8 years of age). Bio-psycho-social factors could uniquely explain a small proportion of the brain age variance, in a similar pattern across diffusion approaches: cognitive scores, life satisfaction, health and lifestyle factors adding to the variance explained, but not socio-demographics. Consistent brain age associations across models were found for waist-to-hip ratio, diabetes, hypertension, smoking, matrix puzzles solving, and job and health satisfaction and perception. Furthermore, we found large variability in sex and ethnicity group differences in brain age. Our results show that brain age cannot be sufficiently explained by bio-psycho-social variables alone. However, the observed associations suggest to adjust for sex, ethnicity, cognitive factors, as well as health and lifestyle factors, and to observe bio-psycho-social factor interactions’ influence on brain age in future studies.publishedVersio
Dissecting unique and common variance across body and brain health indicators using age prediction
Ageing is a heterogeneous multisystem process involving different rates of decline in physiological integrity across biological systems. The current study dissects the unique and common variance across body and brain health indicators and parses inter‐individual heterogeneity in the multisystem ageing process. Using machine‐learning regression models on the UK Biobank data set (N = 32,593, age range 44.6–82.3, mean age 64.1 years), we first estimated tissue‐specific brain age for white and gray matter based on diffusion and T1‐weighted magnetic resonance imaging (MRI) data, respectively. Next, bodily health traits, including cardiometabolic, anthropometric, and body composition measures of adipose and muscle tissue from bioimpedance and body MRI, were combined to predict ‘body age’. The results showed that the body age model demonstrated comparable age prediction accuracy to models trained solely on brain MRI data. The correlation between body age and brain age predictions was 0.62 for the T1 and 0.64 for the diffusion‐based model, indicating a degree of unique variance in brain and bodily ageing processes. Bayesian multilevel modelling carried out to quantify the associations between health traits and predicted age discrepancies showed that higher systolic blood pressure and higher muscle‐fat infiltration were related to older‐appearing body age compared to brain age. Conversely, higher hand‐grip strength and muscle volume were related to a younger‐appearing body age. Our findings corroborate the common notion of a close connection between somatic and brain health. However, they also suggest that health traits may differentially influence age predictions beyond what is captured by the brain imaging data, potentially contributing to heterogeneous ageing rates across biological systems and individuals
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Robust estimator framework in diffusion tensor imaging
Diffusion of water molecules in the human brain tissue has strong similarities with diffusion in porous media. It is affected by
different factors such as restrictions and compartmentalization, interaction with membrane walls, strong anisotropy imposed by cellular microstructure, etc. However, multiple artefacts abound in in vivo measurements either from subject motions, such as cardiac pulsation, bulk head motion, respiratory motion, and involuntary tics and tremor, or hardware related problems, such as table vibrations, etc. All these artefacts can substantially degrade the resulting images and render postprocessing diffusion analysis difficult or even impossible. In order to overcome these problems, we have developed a robust and efficient approach based on the least trimmed squares algorithm that works well with severely degraded datasets with low signal-to-noise ratio. This approach has been compared with other diffusion imaging post-processing algorithms using simulations and in vivo experiments. We demonstrate that the least trimmed squares algorithm can be easily adopted for multiple non-Gaussian diffusion models such as the biexponential model. The developed approach is shown to exhibit a high efficiency and accuracy and can, in principle, be exploited in
other diffusion studies where artefact/outlier suppression is demanded
Robust estimator framework in diffusion tensor imaging
Diffusion of water molecules in the human brain tissue has strong similarities with diffusion in porous media. It is affected by
different factors such as restrictions and compartmentalization, interaction with membrane walls, strong anisotropy imposed by cellular microstructure, etc. However, multiple artefacts abound in in vivo measurements either from subject motions, such as cardiac pulsation, bulk head motion, respiratory motion, and involuntary tics and tremor, or hardware related problems, such as table vibrations, etc. All these artefacts can substantially degrade the resulting images and render postprocessing diffusion analysis difficult or even impossible. In order to overcome these problems, we have developed a robust and efficient approach based on the least trimmed squares algorithm that works well with severely degraded datasets with low signal-to-noise ratio. This approach has been compared with other diffusion imaging post-processing algorithms using simulations and in vivo experiments. We demonstrate that the least trimmed squares algorithm can be easily adopted for multiple non-Gaussian diffusion models such as the biexponential model. The developed approach is shown to exhibit a high efficiency and accuracy and can, in principle, be exploited in
other diffusion studies where artefact/outlier suppression is demanded
- …