19 research outputs found

    The Mayo conservative hip: complication analysis and management of the first 41 cases performed at a University level 1 department

    No full text
    Background: To prevent bone loss in hip arthroplasty, several short stem systems have been developed, including the Mayo conservative hip system. While there is a plethora of data confirming inherent advantages of these systems, only little is known about potential complications, especially when surgeons start to use these systems. Methods: In this study, we present a retrospective analysis of the patients’ outcome, complications and the complication management of the first 41 Mayo conservative hips performed in 37 patients. For this reason, functional scores, radiographic analyses, peri- and postoperative complications were assessed at an average follow-up of 35 months. Results: The overall HHS improved from 61.2 pre-operatively to 85.6 post-operatively. The German Extra Short Musculoskeletal Function Assessment Questionnaire (XSFMA-D) improved from 30.3 pre-operatively to 12.2 post-operatively. The most common complication was an intraoperative non-displaced fracture of the proximal femur observed in 5 cases (12.1%). Diabetes, higher BMI and older ages were shown to be risk factors for these intra-operative periprosthetic fractures (p < 0.01). Radiographic analysis revealed a good offset reconstruction in all cases. Conclusion: In our series, a high complication rate with 12.1% of non-displaced proximal femoral fractures was observed using the Mayo conservative hip. This may be attributed to the flat learning curve of the system or the inherent patient characteristics of the presented cohort.

    Measuring the Optical Point Spread Function of FACT Using the Cherenkov Camera

    No full text
    FACT, the First G-APD Cherenkov Telescope, is an Imaging Air Cherenkov Telescope (IACT) operating since 2011 at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. As typical for IACTs, its reflector is comprised of smaller mirror facets and not protected by a dome. In the case of FACT, 30 hexagonal facets form a total mirror area of 9.5 m 2 . Hence, it is crucial to monitor the optical properties of this system and realign the facets if necessary. Up to now, measuring the Point Spread Function of FACT required human interaction to mount a screen and an optical camera. In this contribution, a new method to measure the optical Point Spread Function using directly the Cherenkov camera of the telescope is presented. Inspired by the method radio telescopes use to determine their resolution, the telescope is pointed towards a fixed position on the trajectory of a star. During the star’s passage through the field of view, the camera is read out using a fixed rate. In each event, the pedestal variance is determined for each pixel. This value is directly correlated with the amount of night sky background light a pixel received. Translating the time of the measurement to the position of the star in the camera enables to determine the optical point spread function from this measurement. As the measurement is done for each pixel along the trajectory of the star, the Point Spread Function can be determined not only for the camera center but for the entire field of view. In this contribution, the new method will also be compared with the existing methods of determining the optical Point Spread Function: direct measurement with an optical camera and the width of Muon ring eventsISSN:1824-803

    FACT - Searching for periodicity in five-year light-curves of Active Galactic Nuclei

    No full text
    The First G-APD Cherenkov Telescope (FACT) has been monitoring Active Galactic Nuclei (AGN) for the past five years. The use of robust silicon photomultipliers (SiPMs) allows for a continuous, unbiased sampling even during bright-light conditions. This dataset promises insights into the core regions of AGN by investigating the periodicity of the sources. Periodic changes in the flux could indicate a binary nature of the supermassive black holes. A study using the Lomb-Scargle periodogram to find periodicity in monitored AGN is presented. Repeating patterns in the observation times, like moon periods and seasonal effects, affect the analysis by introducing spurious peaks into the periodogram. The zenith-dependence of the observed γ-ray rates further complicate the interpretation. Showing no variability at TeV energies, the γ-ray flux of the Crab Nebula is used to characterize this latter effect, before applying the Lomb-Scargle algorithm.ISSN:1824-803

    FACT - Highlights from more than Five Years of Unbiased Monitoring at TeV Energies

    No full text
    The First G-APD Cherenkov Telescope (FACT) is monitoring blazars at TeV energies. Thanks to the observing strategy, the automatic operation and the usage of solid state photosensors (SiPM, aka G-APDs), the duty cycle of the instrument has been maximized and the observational gaps minimized. This provides a unprecedented, unbiased data sample of almost 9000~hours of data of which 2375 hours were taken in 2016. An automatic quick look analysis provides results with low latency on a public website. More than 40 alerts have been sent in the last three years based on this. To study the origin of the very high energy emission from blazars simultaneous multi-wavelength and multi-messenger observations are crucial to draw conclusions on the underlying emission mechanisms, e.g. to distinguish between leptonic and hadronic models. FACT not only participates in multi-wavelength studies, correlation studies with other instruments and multi-messenger studies, but also collects time-resolved spectral energy distributions using a target-of-opportunity program with X-ray satellites. At TeV energies, FACT provides an unprecedented, unbiased data sample. Using up to 1850 hours per source, the duty cycle of the sources and the characteristics of flares at TeV energies are studied. In the presentation, the highlights from more than five years of monitoring will be summarized including several flaring activities of Mrk 421, Mrk 501 and 1ES 1959+650.ISSN:1824-803

    Using Charged Cosmic Ray Particles to Monitor the Data Quality of FACT

    No full text
    Imaging Air Cherenkov Telescopes (IACT) measure the faint flashes of Cherenkov light emitted by air-showers that are produced when charged particles or gamma rays hit the atmosphere. Therefore, the atmosphere above the IACT is an integral part of the detector. Variations in the performance of the IACT itself, but also changes in the absorption and scattering of Cherenkov light due to clouds or dust affect the interpretation of measured signals. Therefore, information about the status of the full system is crucial to combine measurements from different time periods. The First G-APD Cherenkov Telescope (FACT) is using for the first time solid state photosensors (so-called G-APDs or SiPM) to measure the flashes of Cherenkov light. Based on the stability of these sensors, we showed in the past that it is possible to identify the existence of strong clouds or calima when measuring the intrinsically constant flux of cosmic ray particles at different trigger levels. This necessitated dedicated measurements, preventing normal data taking in parallel. We have now improved the method to use instead those cosmic ray events that are recorded during normal data taking as dominant background. By applying a fixed virtual trigger threshold in software, we measure the rate of charged cosmic ray particles. A deviation from the expected flux allows to identify data sets with reduced performance of the complete system in quasi real-time, without the need for any additional device. Applying the method to a data set when one of the 30 mirror tiles of FACT was missing, we show that a change of total yield of the Cherenkov light by few percent can be identified within few minutes of standard data taking. This nicely demonstrates that the hadron rate determined from standard data taking with FACT can be used for monitoring of the data quality.ISSN:1824-803

    An Emerging Approach for Parallel Quantification of Intracellular Protozoan Parasites and Host Cell Characterization Using TissueFAXS Cytometry

    Get PDF
    Characterization of host-pathogen interactions is a fundamental approach in microbiological and immunological oriented disciplines. It is commonly accepted that host cells start to change their phenotype after engulfing pathogens. Techniques such as real time PCR or ELISA were used to characterize the genes encoding proteins that are associated either with pathogen elimination or immune escape mechanisms. Most of such studies were performed in vitro using primary host cells or cell lines. Consequently, the data generated with such approaches reflect the global RNA expression or protein amount recovered from all cells in culture. This is justified when all host cells harbor an equal amount of pathogens under experimental conditions. However, the uptake of pathogens by phagocytic cells is not synchronized. Consequently, there are host cells incorporating different amounts of pathogens that might result in distinct pathogen-induced protein biosynthesis. Therefore, we established a technique able to detect and quantify the number of pathogens in the corresponding host cells using immunofluorescence-based high throughput analysis. Paired with multicolor staining of molecules of interest it is now possible to analyze the infection profile of host cell populations and the corresponding phenotype of the host cells as a result of parasite load
    corecore