5 research outputs found

    Project Westdrive: Unity City With Self-Driving Cars and Pedestrians for Virtual Reality Studies

    No full text
    Virtual environments will deeply alter the way we conduct scientific studies on human behavior. Possible applications range from spatial navigation over addressing moral dilemmas in a more natural manner to therapeutic applications for affective disorders. The decisive factor for this broad range of applications is that virtual reality (VR) is able to combine a well-controlled experimental environment together with the ecological validity of the immersion of test subjects. Until now, however, programming such an environment in Unity® requires profound knowledge of C# programming, 3D design, and computer graphics. In order to give interested research groups access to a realistic VR environment which can easily adapt to the varying needs of experiments, we developed a large, open source, scriptable, and modular VR city. It covers an area of 230 hectare, up to 150 self-driving vehicles and 655 active and passive pedestrians and thousands of nature assets to make it both highly dynamic and realistic. Furthermore, the repository presented here contains a stand-alone City AI toolkit for creating avatars and customizing cars. Finally, the package contains code to easily set up VR studies. All main functions are integrated into the graphical user interface of the Unity® Editor to ease the use of the embedded functionalities. In summary, the project named Westdrive is developed to enable research groups to access a state-of-the-art VR environment that is easily adapted to specific needs and allows focus on the respective research question

    Westdrive X LoopAR: An Open-Access Virtual Reality Project in Unity for Evaluating User Interaction Methods during Takeover Requests

    No full text
    With the further development of highly automated vehicles, drivers will engage in non-related tasks while being driven. Still, drivers have to take over control when requested by the car. Here, the question arises, how potentially distracted drivers get back into the control-loop quickly and safely when the car requests a takeover. To investigate effective human–machine interactions, a mobile, versatile, and cost-efficient setup is needed. Here, we describe a virtual reality toolkit for the Unity 3D game engine containing all the necessary code and assets to enable fast adaptations to various human–machine interaction experiments, including closely monitoring the subject. The presented project contains all the needed functionalities for realistic traffic behavior, cars, pedestrians, and a large, open-source, scriptable, and modular VR environment. It covers roughly 25 km2, a package of 125 animated pedestrians, and numerous vehicles, including motorbikes, trucks, and cars. It also contains all the needed nature assets to make it both highly dynamic and realistic. The presented repository contains a C++ library made for LoopAR that enables force feedback for gaming steering wheels as a fully supported component. It also includes all necessary scripts for eye-tracking in the used devices. All the main functions are integrated into the graphical user interface of the Unity® editor or are available as prefab variants to ease the use of the embedded functionalities. This project’s primary purpose is to serve as an open-access, cost-efficient toolkit that enables interested researchers to conduct realistic virtual reality research studies without costly and immobile simulators. To ensure the accessibility and usability of the mentioned toolkit, we performed a user experience report, also included in this paper

    Literatur

    No full text
    corecore