6 research outputs found

    Adiabatic superconducting cells for ultra-low-power artificial neural networks

    No full text
    We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks

    Peculiarities of Resonant Absorption of Electromagnetic Signals in Multilayer Bolometric Sensors

    No full text
    We examine the effect of resonant absorption of electromagnetic signals in a silicon semiconductor plasma layer when the dielectric plate is placed behind it both experimentally and numerically. It is shown that such plate acts as a dielectric resonator and can significantly increase the electromagnetic energy absorption in the semiconductor for certain frequencies determined by the dielectric plate parameters. Numerical modelling of the effect is performed under the conditions of conducted experiment. The numerical results are found to be in qualitative agreement with experimental ones. This study confirms the proposed earlier method of increasing the efficiency of bolometric-type detectors of electromagnetic radiation

    Issues with Modeling a Tunnel Communication Channel through a Plasma Sheath

    No full text
    We consider two of the most relevant problems that arise when modeling the properties of a tunnel radio communication channel through a plasma layer. First, we studied the case of the oblique incidence of electromagnetic waves on a layer of ionized gas for two wave polarizations. The resonator parameters that provide signal reception at a wide solid angle were found. We also took into account the unavoidable presence of a protective layer between the plasma and the resonator, as well as the conducting elements of the antenna system in the dielectric itself. This provides the first complete simulation for a tunnel communication channel. Noise immunity and communication range studies were conducted for a prospective spacecraft radio line

    Peculiarities of Resonant Absorption of Electromagnetic Signals in Multilayer Bolometric Sensors

    No full text
    We examine the effect of resonant absorption of electromagnetic signals in a silicon semiconductor plasma layer when the dielectric plate is placed behind it both experimentally and numerically. It is shown that such plate acts as a dielectric resonator and can significantly increase the electromagnetic energy absorption in the semiconductor for certain frequencies determined by the dielectric plate parameters. Numerical modelling of the effect is performed under the conditions of conducted experiment. The numerical results are found to be in qualitative agreement with experimental ones. This study confirms the proposed earlier method of increasing the efficiency of bolometric-type detectors of electromagnetic radiation
    corecore