12 research outputs found

    Selenium Dihalides Click Chemistry: Highly Efficient Stereoselective Addition to Alkynes and Evaluation of Glutathione Peroxidase-Like Activity of Bis(E-2-halovinyl) Selenides

    No full text
    Highly efficient stereoselective syntheses of novel bis(E-2-chlorovinyl) selenides and bis(E-2-bromovinyl) selenides in quantitative yields by reactions of selenium dichloride and dibromide with alkynes were developed. The reactions proceeded at room temperature as anti-addition giving products exclusively with (E)-stereochemistry. The glutathione peroxidase-like activity of the obtained products was estimated and compounds with high activity were found. The influence of substituents in the products on their glutathione peroxidase-like activity was discussed

    A Regioselective Synthesis of Novel Functionalized Organochalcogen Compounds by Chalcogenocyclofunctionalization Reactions Based on Chalcogen Halides and Natural Products

    No full text
    The regioselective synthesis of novel functionalized condensed organochalcogen compounds by chalcogenocyclofunctionalization reactions based on chalcogen halides and the natural products thymol and carvacrol has been developed. The reactions of selenium dibromide with allyl thymol and allyl carvacrol proceeded in methylene chloride at room temperature in the presence of NaHCO3 affording bis[(7-isopropyl-4-methyl-2,3-dihydro-1-benzofuran-2-yl)methyl] and bis[(4-isopropyl-7-methyl-2,3-dihydro-1-benzofuran-2-yl)methyl] selenides in 90–92% yield. Similar sulfides were obtained in 70–72% yields by the reaction of sulfur dichloride in chloroform under reflux. Trihalotellanes containing the same organic moieties were synthesized from allyl thymol, allyl carvacrol and tellurium tetrachloride or tetrabromide in quantitative yields. Corresponding functionalized ditellurides were prepared in 91–92% yields by the reduction of the trichlorotellanes with sodium metabisulfite in two-phase solvent system. The comparison of reactivity of sulfur, selenium and tellurium halides in chalcogenocyclofunctionalization and distinguishing features of each reaction were discussed

    Click Chemistry of Selenium Dihalides: Novel Bicyclic Organoselenium Compounds Based on Selenenylation/Bis-Functionalization Reactions and Evaluation of Glutathione Peroxidase-like Activity

    No full text
    A number of highly efficient methods for the preparation of novel derivatives of 9-selenabicyclo[3.3.1]nonane in high yields based on selenium dibromide and cis,cis-1,5-cyclooctadiene are reported. The one-pot syntheses of 2,6-diorganyloxy-9-selenabicyclo[3.3.1]nonanes using various O-nucleophiles including alkanols, phenols, benzyl, allyl, and propargyl alcohols were developed. New 2,6-bis(1,2,3-triazol-1-yl)-9-selenabicyclo[3.3.1]nonanes were obtained by the copper-catalyzed 1,3-dipolar cycloaddition of 2,6-diazido-9-selenabicyclo[3.3.1]nonane with unsubstituted gaseous acetylene and propargyl alcohol. The synthesis of 2,6-bis(vinylsulfanyl)-9-selenabicyclo[3.3.1]nonane, based on the generation of corresponding dithiolate anion from bis[amino(iminio)methylsulfanyl]-9-selenabicyclo[3.3.1]nonane dibromide, followed by the nucleophilic addition of the dithiolate anion to unsubstituted acetylene, was developed. The glutathione peroxidase-like activity of the obtained water-soluble products was estimated and compounds with high activity were found. Overall, 2,6-Diazido-9-selenabicyclo[3.3.1]nonane exhibits the highest activity among the obtained compounds

    Triple-Click Chemistry of Selenium Dihalides: Catalytic Regioselective and Highly Efficient Synthesis of Bis-1,2,3-Triazole Derivatives of 9-Selenabicyclo[3.3.1]nonane

    No full text
    The catalytic regioselective and highly efficient synthesis of bis-1,2,3-triazole derivatives of 9-selenabicyclo[3.3.1]nonane was developed. The 1,3-dipolar cycloaddition reaction of 2,6-diazido-9-selenabicyclo[3.3.1]nonane with a variety of terminal acetylenes catalyzed by a copper acetate/sodium ascorbate system proceeded in a regioselective fashion, affording 2,6-bis(4-organyl-1,2,3-triazole)-9-selenabicyclo[3.3.1]nonanes in high yields (93–98%). The reaction of 2,6-diazido-9-selenabicyclo[3.3.1]nonane with dimethyl and diethyl acetylenedicarboxylates was carried out as thermal 1,3-dipolar Huisgen cycloaddition giving the corresponding 4,5-disubstituted 1,2,3-triazole derivatives of 9-selenabicyclo[3.3.1]nonane in high yields. The obtained products are potentially bioactive compounds and first representatives of selenium heterocycles combined with two 1,2,3-triazole moieties. 2.6-Diazido-9-selenabicyclo[3.3.1]nonane was obtained in quantitative yield via the reaction of sodium azide with 2,6-dibromo-9-selenabicyclo[3.3.1]nonane at room temperature. The latter compound was synthesized by stereoselective transannular addition of selenium dibromide to cis, cis-1,5-cyclooctadiene

    A New Family of Vinyl Selenocyanates with the Amide Function Based on the Reaction of Potassium Selenocyanate with 3-Trimethylsilyl-2-Propynamides

    No full text
    An efficient approach to a novel family of (Z)-3-amino-3-oxo-1-propenyl selenocyanates was developed based on the reaction of KSeCN with 3-trimethylsilyl-2-propynamides in the presence of ammonium chloride in methanol. The reaction was accompanied by a desilylation process. The products were not formed under the same reaction conditions in the absence of ammonium chloride, which was used for the first time in the reactions of selenocyanates with acetylenes. The use of this new methodology allowed the reaction to carry out in a regio- and stereoselective fashion as anti-addition affording vinyl selenocyanates with a (Z)-configuration in high yields

    (Z,Z)-Selanediylbis(2-propenamides): Novel Class of Organoselenium Compounds with High Glutathione Peroxidase-Like Activity. Regio- and Stereoselective Reaction of Sodium Selenide with 3-Trimethylsilyl-2-propynamides

    No full text
    The efficient regio- and stereoselective synthesis of (Z,Z)-3,3′-selanediylbis(2-propenamides) in 76–93% yields was developed based on the reaction of sodium selenide with 3-trimethylsilyl-2-propynamides. (Z,Z)-3,3′-Selanediylbis(2-propenamides) are a novel class of organoselenium compounds. To date, not a single representative of 3,3′-selanediylbis(2-propenamides) has been described in the literature. Studying glutathione peroxidase-like properties by a model reaction showed that the activity of the obtained products significantly varies depending on the organic moieties in the amide group. Divinyl selenide, which contains two lipophilic cyclohexyl substituents in the amide group, exhibits very high glutathione peroxidase-like activity and this compound is considerably superior to other products in this respect

    Pd/Cu-Catalyzed Cross-Coupling of Bis(2-bromovinyl) Selenides with Terminal Acetylenes: Unusual Involvement of Selanyl Function in the Sonogashira Reaction

    No full text
    The Pd/Cu-catalyzed Sonogashira reaction of (E,E)-bis(2-bromovinyl) selenide and (E,E)-bis(1-bromo-1-hexen-2-yl) selenide with terminal alkynes was found to proceed at room temperature involving both bromine atoms and the selanyl function. As a result, new bis-(1,3-enynyl) selenides and enediyne hydrocarbons are formed with a complete retention of the stereoconfiguration of the initial selenides. Due to steric hindrances in the cross-coupling at the selenyl function in the case of (E,E)-bis(1-bromo-1-hexen-2-yl) selenide, the second process is realized to a lesser extent than with unsubstituted (E,E)-bis(2-bromovinyl) selenide

    Regio- and Stereoselective Synthesis of (Z,Z)-Bis(3-amino-3-oxo-1-propenyl) Selenides and Diselenides Based on 2-propynamides: A Novel Family of Diselenides with High Glutathione Peroxidase-like Activity

    No full text
    The efficient regio- and stereoselective syntheses of (Z,Z)-bis(3-amino-3-oxo-1-propenyl) selenides and diselenides in high yields based on the nucleophilic addition of sodium selenide to 2-propynamides and sodium diselenide to 3-(trimethylsilyl)-2-propynamides have been developed. The first examples of the addition of a selenium-centered nucleophile to 2-propynamides with a terminal triple bond and diselenide anion to 3-(trimethylsilyl)-2-propynamides have been carried out. Bis(3-amino-3-oxo-1-propenyl) diselenides are a novel family of compounds, none of which has yet been described in the literature. The glutathione peroxidase-like activity of the obtained compounds has been evaluated and products with high activity have been found. It was established that diselenides are superior to selenides with the same substituents in glutathione peroxidase-like activity. The results of the structural studying of products by single-crystal X-ray diffraction analysis and 77Se-NMR data are discussed

    Selenium Dihalides Click Chemistry: Highly Efficient Stereoselective Addition to Alkynes and Evaluation of Glutathione Peroxidase-Like Activity of Bis(<i>E</i>-2-halovinyl) Selenides

    No full text
    Highly efficient stereoselective syntheses of novel bis(E-2-chlorovinyl) selenides and bis(E-2-bromovinyl) selenides in quantitative yields by reactions of selenium dichloride and dibromide with alkynes were developed. The reactions proceeded at room temperature as anti-addition giving products exclusively with (E)-stereochemistry. The glutathione peroxidase-like activity of the obtained products was estimated and compounds with high activity were found. The influence of substituents in the products on their glutathione peroxidase-like activity was discussed

    Regioselective One-Pot Synthesis of Novel Functionalized Organoselenium Compound by Bis-Alkoxyselenenylation of Alkenes with Selenium Dibromide and Alcohols

    No full text
    The one-pot efficient synthesis of novel functionalized organoselenium compound by bis-alkoxyselenenylation of alkenes with selenium dibromide and alcohols was developed. The reaction of the selenium dibromide with cyclopentene or cyclohexene in the system alcohol/sodium bicarbonate/methylene chloride at room temperature afforded bis(2-alkoxycycloalkyl) selenides in 90&ndash;99% yields. The regioselective and efficient method for bis-alkoxylation of terminal alkenes was developed based on the addition of selenium dibromide with 1-alkenes in acetonitrile followed by refluxing of addition products in alcohols in the presence of traces of sulfuric acid. This method made it possible to selectively obtain bis(2-alkoxyalkyl) selenides in 94&ndash;98% yields
    corecore