15 research outputs found

    Atorvastatin Can Modulate DNA Damage Repair in Endothelial Cells Exposed to Mitomycin C

    No full text
    HMG-CoA reductase inhibitors (statins) are widely used in the therapy of atherosclerosis and have a number of pleiotropic effects, including DNA repair regulation. We studied the cytogenetic damage and the expression of DNA repair genes (DDB1, ERCC4, and ERCC5) in human coronary artery (HCAEC) and internal thoracic artery endothelial cells (HITAEC) in vitro exposed to mitomycin C (MMC) (positive control), MMC and atorvastatin (MMC+Atv), MMC followed by atorvastatin treatment (MMC/Atv) and 0.9% NaCl (negative control). MMC/Atv treated HCAEC were characterized by significantly decreased micronuclei (MN) frequency compared to the MMC+Atv group and increased nucleoplasmic bridges (NPBs) frequency compared to both MMC+Atv treated cells and positive control; DDB1, ERCC4, and ERCC5 genes were upregulated in MMC+Atv and MMC/Atv treated HCAEC in comparison with the positive control. MMC+Atv treated HITAEC were characterized by reduced MN frequency compared to positive control and decreased NPBs frequency in comparison with both the positive control and MMC/Atv group. Nuclear buds (NBUDs) frequency was significantly lower in MMC/Atv treated cells than in the positive control. The DDB1 gene was downregulated in the MMC+Atv group compared to the positive control, and the ERCC5 gene was upregulated in MMC/Atv group compared to both the positive control and MMC+Atv group. We propose that atorvastatin can modulate the DNA damage repair response in primary human endothelial cells exposed to MMC in a cell line- and incubation scheme-dependent manner that can be extremely important for understanding the fundamental aspects of pleoitropic action of atorvastatin and can also be used to correct the therapy of patients with atherosclerosis characterized by a high genotoxic load

    The Role of Polymorphism in the Endothelial Homeostasis and Vitamin D Metabolism Genes in the Severity of Coronary Artery Disease

    No full text
    Coronary artery disease (CAD) remains one of the leading causes of cardiovascular morbidity and mortality worldwide. The maintenance of endothelial homeostasis and vitamin D metabolism play an important role in CAD pathogenesis. This study aimed to determine the association of endothelial homeostasis and vitamin D metabolism gene polymorphism with CAD severity. A total of 224 low-risk patients (SYNTAX score ≤ 31) and 36 high-risk patients (SYNTAX score > 31) were recruited for this study. The serum level of E-, L- and P-selectins; endothelin; eNOS; 25OH; and 1.25-dihydroxy vitamin D was measured using an enzyme-linked immunosorbent assay (ELISA). Polymorphic variants in SELE, SELP, SELPLG, END1, NOS3, VDR and GC were analyzed using a polymerase chain reaction (PCR). We found no differences in the serum levels of the studied markers between high- and low-risk patients. Three polymorphic variants associated with CAD severity were discovered: END1 rs3087459, END1 rs5370 and GC rs2298849 in the log-additive model. Moreover, we discovered a significantly decreased serum level of 1.25-dihydroxy vitamin D in high-risk CAD patients with the A/A–A/G genotypes of the rs2228570 polymorphism of the VDR gene, the A/A genotype of the rs7041 polymorphism of the GC gene and the A/A genotype of the rs2298849 polymorphism of the GC gene

    Whole-Transcriptome Sequencing: A Powerful Tool for Vascular Tissue Engineering and Endothelial Mechanobiology

    No full text
    Among applicable high-throughput techniques in cardiovascular biology, whole-transcriptome sequencing is of particular use. By utilizing RNA that is isolated from virtually all cells and tissues, the entire transcriptome can be evaluated. In comparison with other high-throughput approaches, RNA sequencing is characterized by a relatively low-cost and large data output, which permits a comprehensive analysis of spatiotemporal variation in the gene expression profile. Both shear stress and cyclic strain exert hemodynamic force upon the arterial endothelium and are considered to be crucial determinants of endothelial physiology. Laminar blood flow results in a high shear stress that promotes atheroresistant endothelial phenotype, while a turbulent, oscillatory flow yields a pathologically low shear stress that disturbs endothelial homeostasis, making respective arterial segments prone to atherosclerosis. Severe atherosclerosis significantly impairs blood supply to the organs and frequently requires bypass surgery or an arterial replacement surgery that requires tissue-engineered vascular grafts. To provide insight into patterns of gene expression in endothelial cells in native or bioartificial arteries under different biomechanical conditions, this article discusses applications of whole-transcriptome sequencing in endothelial mechanobiology and vascular tissue engineering

    Identification of Key Genes and Pathways in Genotoxic Stress Induced Endothelial Dysfunction: Results of Whole Transcriptome Sequencing

    No full text
    Atherosclerosis is a leading cause of cardiovascular morbidity and mortality worldwide. Endothelial disfunction underlying the atherogenesis can be triggered by genotoxic stress in endothelial cells. In the presented research whole transcriptome sequencing (RNA-seq) of human coronary artery (HCAEC) and internal thoracic artery (HITAEC) endothelial cells in vitro exposed to 500 ng/mL mitomycin C (treatment group) or 0.9% NaCl (control group) was performed. Resulting to bioinformatic analysis, 56 upregulated differentially expressed genes (DEGs) and 6 downregulated DEGs with absolute fold change ≥ 2 and FDR p-value < 0.05 were selected in HCAEC exposed to mitomycin C compared to the control group; in HITAEC only one upregulated DEG was found. According to Gene Ontology enrichment analysis, DEGs in HCAEC were classified into 25 functional groups of biological processes, while in HITAEC we found no statistically significant (FDR p-value < 0.05) groups. The four largest groups containing more than 50% DEGs (“signal transduction”, “response to stimulus”, “biological regulation”, and “regulation of biological process”) were identified. Finally, candidate DEGs and pathways underlying the genotoxic stress induced endothelial disfunction have been discovered that could improve our understanding of fundamental basis of atherogenesis and help to justification of genotoxic stress as a novel risk factor for atherosclerosis

    Proteomic Profiling of Endothelial Cells Exposed to Mitomycin C: Key Proteins and Pathways Underlying Genotoxic Stress-Induced Endothelial Dysfunction

    No full text
    Mitomycin C (MMC)-induced genotoxic stress can be considered to be a novel trigger of endothelial dysfunction and atherosclerosis—a leading cause of cardiovascular morbidity and mortality worldwide. Given the increasing genotoxic load on the human organism, the decryption of the molecular pathways underlying genotoxic stress-induced endothelial dysfunction could improve our understanding of the role of genotoxic stress in atherogenesis. Here, we performed a proteomic profiling of human coronary artery endothelial cells (HCAECs) and human internal thoracic endothelial cells (HITAECs) in vitro that were exposed to MMC to identify the biochemical pathways and proteins underlying genotoxic stress-induced endothelial dysfunction. We denoted 198 and 71 unique, differentially expressed proteins (DEPs) in the MMC-treated HCAECs and HITAECs, respectively; only 4 DEPs were identified in both the HCAECs and HITAECs. In the MMC-treated HCAECs, 44.5% of the DEPs were upregulated and 55.5% of the DEPs were downregulated, while in HITAECs, these percentages were 72% and 28%, respectively. The denoted DEPs are involved in the processes of nucleotides and RNA metabolism, vesicle-mediated transport, post-translation protein modification, cell cycle control, the transport of small molecules, transcription and signal transduction. The obtained results could improve our understanding of the fundamental basis of atherogenesis and help in the justification of genotoxic stress as a risk factor for atherosclerosis

    Immune Response and Lipid Metabolism Gene Polymorphisms Are Associated with the Risk of Obesity in Middle-Aged and Elderly Patients

    No full text
    More than two billion people around the world are overweight or obese. Even in apparently healthy people, obesity has a potent effect on their quality of life. Experimental data indicate the role of infectious agents in systemic inflammation, revealing a correlation between the dietary habits of people with obesity and the level of systemic inflammation mediators, serum lipid concentration, and hormonal and immune status. This study aimed to determine the association of immune response and lipid metabolism gene polymorphisms with the risk of obesity. This study included 560 Caucasian participants living in Western Siberia (Russian Federation). A total of 52 polymorphic sites in 20 genes were analyzed using the 5′ TaqMan nuclease assay. Four risk-associated polymorphic variants were discovered—two variants in immune response genes (IL6R rs2229238, OR = 1.92, 95% CI = 1.36–2.7, p = 0.0002 in the dominant model; IL18 rs1946518, OR = 1.45, 95% CI = 1.03–2.04, p = 0.033 in the over-dominant model) and two variants in lipid metabolism genes (LPA rs10455872, OR = 1.86, 95% CI = 1.07–3.21, p = 0.026 in the log-additive model; LEPR rs1137100, OR = 2.88, 95% CI = 1.52–5.46, p = 0.001 in the recessive model). Thus, polymorphisms in immune response and lipid metabolism genes are potentially associated with the modification of obesity risk in the Caucasian population

    Co-Culture of Primary Human Coronary Artery and Internal Thoracic Artery Endothelial Cells Results in Mutually Beneficial Paracrine Interactions

    No full text
    Although saphenous veins (SVs) are commonly used as conduits for coronary artery bypass grafting (CABG), internal thoracic artery (ITA) grafts have significantly higher long-term patency. As SVs and ITA endothelial cells (ECs) have a considerable level of heterogeneity, we suggested that synergistic paracrine interactions between CA and ITA ECs (HCAECs and HITAECs, respectively) may explain the increased resistance of ITA grafts and adjacent CAs to atherosclerosis and restenosis. In this study, we measured the gene and protein expression of the molecules responsible for endothelial homeostasis, pro-inflammatory response, and endothelial-to-mesenchymal transition in HCAECs co-cultured with either HITAECs or SV ECs (HSaVECs) for an ascending duration. Upon the co-culture, HCAECs and HITAECs showed augmented expression of endothelial nitric oxide synthase (eNOS) and reduced expression of endothelial-to-mesenchymal transition transcription factors Snail and Slug when compared to the HCAEC–HSaVEC model. HCAECs co-cultured with HITAECs demonstrated an upregulation of HES1, a master regulator of arterial specification, of which the expression was also exclusively induced in HSaVECs co-cultured with HCAECs, suggestive of their arterialisation. In addition, co-culture of HCAECs and HITAECs promoted the release of pro-angiogenic molecules. To conclude, co-culture of HCAECs and HITAECs results in reciprocal and beneficial paracrine interactions that might contribute to the better performance of ITA grafts upon CABG

    Calciprotein Particles Cause Endothelial Dysfunction under Flow

    No full text
    Calciprotein particles (CPPs), which increasingly arise in the circulation during the disorders of mineral homeostasis, represent a double-edged sword protecting the human organism from extraskeletal calcification but potentially causing endothelial dysfunction. Existing models, however, failed to demonstrate the detrimental action of CPPs on endothelial cells (ECs) under flow. Here, we applied a flow culture system, where human arterial ECs were co-incubated with CPPs for 4 h, and a normolipidemic and normotensive rat model (10 daily intravenous injections of CPPs) to simulate the scenario occurring in vivo in the absence of confounding cardiovascular risk factors. Pathogenic effects of CPPs were investigated by RT-qPCR and Western blotting profiling of the endothelial lysate. CPPs were internalised within 1 h of circulation, inducing adhesion of peripheral blood mononuclear cells to ECs. Molecular profiling revealed that CPPs stimulated the expression of pro-inflammatory cell adhesion molecules VCAM1 and ICAM1 and upregulated transcription factors of endothelial-to-mesenchymal transition (Snail, Slug and Twist1). Furthermore, exposure to CPPs reduced the production of atheroprotective transcription factors KLF2 and KLF4 and led to YAP1 hypophosphorylation, potentially disturbing the mechanisms responsible for the proper endothelial mechanotransduction. Taken together, our results suggest the ability of CPPs to initiate endothelial dysfunction at physiological flow conditions
    corecore