3,272 research outputs found
The H1 Forward Track Detector at HERA II
In order to maintain efficient tracking in the forward region of H1 after the
luminosity upgrade of the HERA machine, the H1 Forward Track Detector was also
upgraded. While much of the original software and techniques used for the HERA
I phase could be reused, the software for pattern recognition was completely
rewritten. This, along with several other improvements in hit finding and
high-level track reconstruction, are described in detail together with a
summary of the performance of the detector.Comment: Minor revision requested by journal (JINST) edito
Molecular motion in cell membranes: analytic study of fence-hindered random walks
A theoretical calculation is presented to describe the confined motion of
transmembrane molecules in cell membranes. The study is analytic, based on
Master equations for the probability of the molecules moving as random walkers,
and leads to explicit usable solutions including expressions for the molecular
mean square displacement and effective diffusion constants. One outcome is a
detailed understanding of the dependence of the time variation of the mean
square displacement on the initial placement of the molecule within the
confined region. How to use the calculations is illustrated by extracting
(confinement) compartment sizes from experimentally reported published
observations from single particle tracking experiments on the diffusion of
gold-tagged G-protein coupled mu-opioid receptors in the normal rat kidney cell
membrane, and by further comparing the analytical results to observations on
the diffusion of phospholipids, also in normal rat kidney cells.Comment: 10 pages, 5 figure
Excitability in autonomous Boolean networks
We demonstrate theoretically and experimentally that excitable systems can be
built with autonomous Boolean networks. Their experimental implementation is
realized with asynchronous logic gates on a reconfigurabe chip. When these
excitable systems are assembled into time-delay networks, their dynamics
display nanosecond time-scale spike synchronization patterns that are
controllable in period and phase.Comment: 6 pages, 5 figures, accepted in Europhysics Letters
(epljournal.edpsciences.org
Effects of disorder in location and size of fence barriers on molecular motion in cell membranes
The effect of disorder in the energetic heights and in the physical locations
of fence barriers encountered by transmembrane molecules such as proteins and
lipids in their motion in cell membranes is studied theoretically. The
investigation takes as its starting point a recent analysis of a periodic
system with constant distances between barriers and constant values of barrier
heights, and employs effective medium theory to treat the disorder. The
calculations make possible, in principle, the extraction of confinement
parameters such as mean compartment sizes and mean intercompartmental
transition rates from experimentally reported published observations. The
analysis should be helpful both as an unusual application of effective medium
theory and as an investigation of observed molecular movements in cell
membranes.Comment: 9 pages, 5 figure
The changing pattern of domestic cannabis cultivation in the UK and its impact on the cannabis market
With improvements in both technology and information cannabis is being increasingly grown indoors for domestic use, rather than being imported. This study examines 50 cannabis farms detected by an English police force, and examines the characteristics of the 61 suspects associated with them. The study highlights a UK pattern in domestic cultivation, that is moving away from large scale commercial cultivation, at times co-ordinated by South East Asian organised crime groups, to increased cultivation within residential premises by British citizens. Offenders range from those who have no prior criminal history to those who are serious and persistent offenders. The ramifications for law enforcement agencies and policy formers are discussed
Fibrin regulates neutrophil migration in response to interleukin 8, leukotriene B4, tumor necrosis factor, and formyl-methionyl-leucyl-phenylalanine
We have examined the capacity of four different chemoattractants/cytokines to promote directed migration of polymorphonuclear leukocytes (PMN) through three-dimensional gels composed of extracellular matrix proteins. About 20% of PMN migrated through fibrin gels and plasma clots in response to a gradient of interleukin 8 (IL-8) or leukotriene B4 (LTB4). In contrast, < 0.3% of PMN migrated through fibrin gels in response to a gradient of tumor necrosis factor alpha (TNF) or formyl-methionyl-leucyl-phenylalanine (FMLP). All four chemoattractants stimulated PMN to migrate through gels composed of collagen IV or of basement membrane proteins (Matrigel), or through filters to which fibronectin or fibrinogen had been adsorbed. PMN stimulated with TNF or FMLP adhered and formed zones of close apposition to fibrin, as measured by the exclusion of a 10-kD rhodamine-polyethylene glycol probe from the contact zones between PMN and the underlying fibrin gel. By this measure, IL-8- or LTB4-treated PMN adhered loosely to fibrin, since 10 kD rhodamine-polyethylene glycol permeated into the contact zones between these cells and the underlying fibrin gel. PMN stimulated with FMLP and IL-8, or FMLP and LTB4, exhibited very little migration through fibrin gels, and three times as many of these cells excluded 10 kD rhodamine-polyethylene glycol from their zones of contact with fibrin as PMN stimulated with IL-8 or LTB4 alone. These results show that PMN chemotaxis is regulated by both the nature of the chemoattractant and the composition of the extracellular matrix; they suggest that certain combinations of chemoattractants and matrix proteins may limit leukocyte movements and promote their localization in specific tissues in vivo
Cellular localization, accumulation and trafficking of double-walled carbon nanotubes in human prostate cancer cells
Carbon nanotubes (CNTs) are at present being considered as potential nanovectors with the ability to deliver therapeutic cargoes into living cells. Previous studies established the ability of CNTs to enter cells and their therapeutic utility, but an appreciation of global intracellular trafficking associated with their cellular distribution has yet to be described. Despite the many aspects of the uptake mechanism of CNTs being studied, only a few studies have investigated internalization and fate of CNTs inside cells in detail. In the present study, intracellular localization and trafficking of RNA-wrapped, oxidized double-walled CNTs (oxDWNT–RNA) is presented. Fixed cells, previously exposed to oxDWNT–RNA, were subjected to immunocytochemical analysis using antibodies specific to proteins implicated in endocytosis; moreover cell compartment markers and pharmacological inhibitory conditions were also employed in this study. Our results revealed that an endocytic pathway is involved in the internalization of oxDWNT–RNA. The nanotubes were found in clathrin-coated vesicles, after which they appear to be sorted in early endosomes, followed by vesicular maturation, become located in lysosomes. Furthermore, we observed co-localization of oxDWNT–RNA with the small GTP-binding protein (Rab 11), involved in their recycling back to the plasma membrane via endosomes from the trans-golgi network
Recent Shifts in the Occurrence, Cause, and Magnitude of Animal Mass Mortality Events
Mass mortality events (MMEs) are rapidly occurring catastrophic demographic events that punctuate background mortality levels. Individual MMEs are staggering in their observed magnitude: re- moving more than 90% of a population, resulting in the death of more than a billion individuals, or producing 700 million tons of dead biomass in a single event. Despite extensive documentation of individual MMEs, we have no understanding of the major features characterizing the occurrence and magnitude of MMEs, their causes, or trends through time. Thus, no framework exists for contextualizing MMEs in the wake of ongoing global and regional perturbations to natural systems. Here we present an analysis of 727 published MMEs from across the globe, affecting 2,407 animal populations. We show that the magnitude of MMEs has been intensifying for birds, fishes, and marine invertebrates; invariant for mammals; and decreasing for reptiles and amphibians. These shifts in magnitude proved robust when we accounted for an increase in the occurrence of MMEs since 1940. However, it remains unclear whether the increase in the occurrence of MMEs represents a true pattern or simply a perceived increase. Regardless, the increase in MMEs appears to be associated with a rise in disease emergence, biotoxicity, and events produced by multiple interacting stressors, yet temporal trends in MME causes varied among taxa and may be associated with increased de- tectability. In addition, MMEs with the largest magnitudes were those that resulted from multiple stressors, starvation, and disease. These results advance our understanding of rare demographic processes and their relationship to global and regional perturba- tions to natural systems
- …