4 research outputs found

    Rock Sparrow Song Reflects Male Age and Reproductive Success

    No full text
    The evolution of mating signals is closely linked to sexual selection. Acoustic ornaments are often used as secondary sexual traits that signal the quality of the signaller. Here we show that song performance reflects age and reproductive success in the rock sparrow (Petronia petronia). In an Alpine population in south-east France, we recorded the songs of males and assessed their genetic breeding success by microsatellite analysis. In addition to temporal and spectral song features, we also analysed for the first time whether the sound pressure level of bird song reflects reproductive success. Males with higher breeding success sang at a lower rate and with a higher maximum frequency. We found also that older males gained more extra-pair young and had a higher overall breeding success, although they also differed almost significantly by having a higher loss of paternity in their own nests. Older males could be distinguished from yearlings by singing at lower rate and higher amplitudes. Our findings suggest that song rate may be used as a signal of age and together with song pitch as a signal of reproductive success in this species. Alternatively, younger and less successful males might try to compensate their inferior status by increased song rates and lower pitch. Independent of age and quality, high-amplitude songs correlated with paternity loss in the own nest, suggesting that in this species song amplitude is not an indicator of male quality but high-intensity songs may be rather a response to unfaithful social mates.© Nemeth et a

    Evidence for adolescent length growth spurts in bonobos and other primates highlights the importance of scaling laws

    No full text
    Adolescent growth spurts (GSs) in body length seem to be absent in non-human primates and are considered a distinct human trait. However, this distinction between present and absent length-GSs may reflect a mathematical artefact that makes it arbitrary. We first outline how scaling issues and inappropriate comparisons between length (linear) and weight (volume) growth rates result in misleading interpretations like the absence of length-GSs in non-human primates despite pronounced weight-GSs, or temporal delays between length- and weight-GSs. We then apply a scale-corrected approach to a comprehensive dataset on 258 zoo-housed bonobos that includes weight and length growth as well as several physiological markers related to growth and adolescence. We found pronounced GSs in body weight and length in both sexes. Weight and length growth trajectories corresponded with each other and with patterns of testosterone and insulin-like growth factor-binding protein 3 levels, resembling adolescent GSs in humans. We further re-interpreted published data of non-human primates, which showed that aligned GSs in weight and length exist not only in bonobos. Altogether, our results emphasize the importance of considering scaling laws when interpreting growth curves in general, and further show that pronounced, human-like adolescent length-GSs exist in bonobos and probably also many other non-human primates

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns (code)

    No full text
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable, with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns, 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12%, and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    No full text
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable, with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns, 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12%, and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide
    corecore