1 research outputs found
Molecular Motors Interacting with Their Own Tracks
Dynamics of molecular motors that move along linear lattices and interact
with them via reversible destruction of specific lattice bonds is investigated
theoretically by analyzing exactly solvable discrete-state ``burnt-bridge''
models. Molecular motors are viewed as diffusing particles that can
asymmetrically break or rebuild periodically distributed weak links when
passing over them. Our explicit calculations of dynamic properties show that
coupling the transport of the unbiased molecular motor with the bridge-burning
mechanism leads to a directed motion that lowers fluctuations and produces a
dynamic transition in the limit of low concentration of weak links. Interaction
between the backward biased molecular motor and the bridge-burning mechanism
yields a complex dynamic behavior. For the reversible dissociation the backward
motion of the molecular motor is slowed down. There is a change in the
direction of the molecular motor's motion for some range of parameters. The
molecular motor also experiences non-monotonic fluctuations due to the action
of two opposing mechanisms: the reduced activity after the burned sites and
locking of large fluctuations. Large spatial fluctuations are observed when two
mechanisms are comparable. The properties of the molecular motor are different
for the irreversible burning of bridges where the velocity and fluctuations are
suppressed for some concentration range, and the dynamic transition is also
observed. Dynamics of the system is discussed in terms of the effective driving
forces and transitions between different diffusional regimes