16 research outputs found

    Effects of alpha-Calcitonin Gene-related Peptide on Osteoprotegerin and Receptor Activator of Nuclear Factor-kappaB Ligand Expression in MG-63 Osteoblast-like Cells exposed to Polyethylene Particles

    Get PDF
    BACKGROUND: Recent studies demonstrated an impact of the nervous system on particle-induced osteolysis, the major cause of aseptic loosening of joint replacements. METHODS: In this study of MG-63 osteoblast-like cells we analyzed the influence of ultra-high molecular weight polyethylene (UHMWPE) particles and the neurotransmitter alpha-calcitonin gene-related peptide (CGRP) on the osteoprotegerin/receptor activator of nuclear factor-κB ligand/receptor activator of nuclear factorκB (OPG/RANKL/RANK) system. MG-63 cells were stimulated by different UHMWPE particle concentrations (1:100, 1:500) and different doses of alpha-CGRP (10(-7 )M, 10(-9 )M, 10(-11 )M). RANKL and OPG mRNA expression and protein levels were measured by RT-PCR and Western blot. RESULTS: Increasing particle concentrations caused an up-regulation of RANKL after 72 hours. Alpha-CGRP showed a dose-independent depressive effect on particle-induced expression of RANKL mRNA in both cell-particle ratios. RANKL gene transcripts were significantly (P < 0.05) decreased by alpha-CGRP treatment after 48 and 72 hours. OPG mRNA was significantly down-regulated in a cell-particle ratio of 1:500 after 72 hours. Alpha-CGRP concentrations of 10(-7 )M lead to an up-regulation of OPG protein. CONCLUSION: In conclusion, a possible osteoprotective influence of the neurotransmitter alpha-CGRP on particle stimulated osteoblast-like cells could be shown. Alpha-CGRP might be important for bone metabolism under conditions of particle-induced osteolysis

    Calcitonin substitution in calcitonin deficiency reduces particle-induced osteolysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Periprosthetic osteolysis is a major cause of aseptic loosening in joint arthroplasty. This study investigates the impact of CT (calcitonin) deficiency and CT substitution under in-vivo circumstances on particle-induced osteolysis in <it>Calca </it>-/- mice.</p> <p>Methods</p> <p>We used the murine calvarial osteolysis model based on ultra-high molecular weight polyethylene (UHMWPE) particles in 10 C57BL/6J wild-type (WT) mice and twenty <it>Calca </it>-/- mice. The mice were divided into six groups: WT without UHMWPE particles (Group 1), WT with UHMWPE particles (Group 2), <it>Calca </it>-/- mice without UHMWPE particles (Group 3), <it>Calca </it>-/- mice with UHMWPE particles (Group 4), <it>Calca </it>-/- mice without UHMWPE particles and calcitonin substitution (Group 5), and <it>Calca </it>-/- mice with UHMWPE particle implantation and calcitonin substitution (Group 6). Analytes were extracted from serum and urine. Bone resorption was measured by bone histomorphometry. The number of osteoclasts was determined by counting the tartrate-resistant acid phosphatase (TRACP) + cells.</p> <p>Results</p> <p>Bone resorption was significantly increased in <it>Calca </it>-/- mice compared with their corresponding WT. The eroded surface in <it>Calca </it>-/- mice with particle implantation was reduced by 20.6% after CT substitution. Osteoclast numbers were significantly increased in <it>Calca </it>-/- mice after particle implantation. Serum OPG (osteoprotegerin) increased significantly after CT substitution.</p> <p>Conclusions</p> <p>As anticipated, <it>Calca </it>-/- mice show extensive osteolysis compared with wild-type mice, and CT substitution reduces particle-induced osteolysis.</p

    Alpha-Calcitonin Gene-Related Peptide Can Reverse The Catabolic Influence Of UHMWPE Particles On RANKL Expression In Primary Human Osteoblasts

    No full text
    <p>Background and purpose: A linkage between the neurotransmitter alpha-calcitonin gene-related peptide (alpha-CGRP) and particle-induced osteolysis has been shown previously. The suggested osteoprotective influence of alpha-CGRP on the catabolic effects of ultra-high molecular weight polyethylene (UHMWPE) particles is analyzed in this study in primary human osteoblasts. Methods: Primary human osteoblasts were stimulated by UHMWPE particles (cell/particle ratios 1:100 and 1:500) and different doses of alpha-CGRP (10<sup>-7 </sup>M, 10<sup>-9 </sup>M, 10<sup>-11 </sup>M). Receptor activator of nuclear factor-&#954;B ligand (RANKL) and osteoprotegerin (OPG) mRNA expression and protein levels were measured by RT-PCR and Western blot. Results: Particle stimulation leads to a significant dose-dependent increase of RANKL mRNA in both cell-particle ratios and a significant down-regulation of OPG mRNA in cell-particle concentrations of 1:500. A significant depression of alkaline phosphatase was found due to particle stimulation. Alpha-CGRP in all tested concentrations showed a significant depressive effect on the expression of RANKL mRNA in primary human osteoblasts under particle stimulation. Comparable reactions of RANKL protein levels due to particles and alpha-CGRP were found by Western blot analysis. In cell-particle ratios of 1:100 after 24 hours the osteoprotective influence of alpha-CGRP reversed the catabolic effects of particles on the RANKL expression. Interpretation: The in-vivo use of alpha-CGRP, which leads to down-regulated RANKL in-vitro, might inhibit the catabolic effect of particles in conditions of particle induced osteolysis.</p

    Effects of alpha-calcitonin gene-related peptide on osteoprotegerin and receptor activator of nuclear factor-κB ligand expression in MG-63 osteoblast-like cells exposed to polyethylene particles

    No full text
    Abstract Background Recent studies demonstrated an impact of the nervous system on particle-induced osteolysis, the major cause of aseptic loosening of joint replacements. Methods In this study of MG-63 osteoblast-like cells we analyzed the influence of ultra-high molecular weight polyethylene (UHMWPE) particles and the neurotransmitter alpha-calcitonin gene-related peptide (CGRP) on the osteoprotegerin/receptor activator of nuclear factor-κB ligand/receptor activator of nuclear factorκB (OPG/RANKL/RANK) system. MG-63 cells were stimulated by different UHMWPE particle concentrations (1:100, 1:500) and different doses of alpha-CGRP (10-7 M, 10-9 M, 10-11 M). RANKL and OPG mRNA expression and protein levels were measured by RT-PCR and Western blot. Results Increasing particle concentrations caused an up-regulation of RANKL after 72 hours. Alpha-CGRP showed a dose-independent depressive effect on particle-induced expression of RANKL mRNA in both cell-particle ratios. RANKL gene transcripts were significantly (P -7 M lead to an up-regulation of OPG protein. Conclusion In conclusion, a possible osteoprotective influence of the neurotransmitter alpha-CGRP on particle stimulated osteoblast-like cells could be shown. Alpha-CGRP might be important for bone metabolism under conditions of particle-induced osteolysis.</p
    corecore