93 research outputs found

    Solving the Tower of Hanoi with Random Moves

    Full text link
    We prove the exact formulae for the expected number of moves to solve several variants of the Tower of Hanoi puzzle with 3 pegs and n disks, when each move is chosen uniformly randomly from the set of all valid moves. We further present an alternative proof for one of the formulae that couples a theorem about expected commute times of random walks on graphs with the delta-to-wye transformation used in the analysis of three-phase AC systems for electrical power distribution

    Weighted genomic distance can hardly impose a bound on the proportion of transpositions

    Full text link
    Genomic distance between two genomes, i.e., the smallest number of genome rearrangements required to transform one genome into the other, is often used as a measure of evolutionary closeness of the genomes in comparative genomics studies. However, in models that include rearrangements of significantly different "power" such as reversals (that are "weak" and most frequent rearrangements) and transpositions (that are more "powerful" but rare), the genomic distance typically corresponds to a transformation with a large proportion of transpositions, which is not biologically adequate. Weighted genomic distance is a traditional approach to bounding the proportion of transpositions by assigning them a relative weight {\alpha} > 1. A number of previous studies addressed the problem of computing weighted genomic distance with {\alpha} \leq 2. Employing the model of multi-break rearrangements on circular genomes, that captures both reversals (modelled as 2-breaks) and transpositions (modelled as 3-breaks), we prove that for {\alpha} \in (1,2], a minimum-weight transformation may entirely consist of transpositions, implying that the corresponding weighted genomic distance does not actually achieve its purpose of bounding the proportion of transpositions. We further prove that for {\alpha} \in (1,2), the minimum-weight transformations do not depend on a particular choice of {\alpha} from this interval. We give a complete characterization of such transformations and show that they coincide with the transformations that at the same time have the shortest length and make the smallest number of breakages in the genomes. Our results also provide a theoretical foundation for the empirical observation that for {\alpha} < 2, transpositions are favored over reversals in the minimum-weight transformations.Comment: The 15th Annual International Conference on Research in Computational Molecular Biology (RECOMB), 2011. (to appear

    Combinatorial Scoring of Phylogenetic Networks

    Full text link
    Construction of phylogenetic trees and networks for extant species from their characters represents one of the key problems in phylogenomics. While solution to this problem is not always uniquely defined and there exist multiple methods for tree/network construction, it becomes important to measure how well the constructed networks capture the given character relationship across the species. In the current study, we propose a novel method for measuring the specificity of a given phylogenetic network in terms of the total number of distributions of character states at the leaves that the network may impose. While for binary phylogenetic trees, this number has an exact formula and depends only on the number of leaves and character states but not on the tree topology, the situation is much more complicated for non-binary trees or networks. Nevertheless, we develop an algorithm for combinatorial enumeration of such distributions, which is applicable for arbitrary trees and networks under some reasonable assumptions.Comment: 12 pages; 3 figure

    On pairwise distances and median score of three genomes under DCJ

    Get PDF
    In comparative genomics, the rearrangement distance between two genomes (equal the minimal number of genome rearrangements required to transform them into a single genome) is often used for measuring their evolutionary remoteness. Generalization of this measure to three genomes is known as the median score (while a resulting genome is called median genome). In contrast to the rearrangement distance between two genomes which can be computed in linear time, computing the median score for three genomes is NP-hard. This inspires a quest for simpler and faster approximations for the median score, the most natural of which appears to be the halved sum of pairwise distances which in fact represents a lower bound for the median score. In this work, we study relationship and interplay of pairwise distances between three genomes and their median score under the model of Double-Cut-and-Join (DCJ) rearrangements. Most remarkably we show that while a rearrangement may change the sum of pairwise distances by at most 2 (and thus change the lower bound by at most 1), even the most "powerful" rearrangements in this respect that increase the lower bound by 1 (by moving one genome farther away from each of the other two genomes), which we call strong, do not necessarily affect the median score. This observation implies that the two measures are not as well-correlated as one's intuition may suggest. We further prove that the median score attains the lower bound exactly on the triples of genomes that can be obtained from a single genome with strong rearrangements. While the sum of pairwise distances with the factor 2/3 represents an upper bound for the median score, its tightness remains unclear. Nonetheless, we show that the difference of the median score and its lower bound is not bounded by a constant.Comment: Proceedings of the 10-th Annual RECOMB Satellite Workshop on Comparative Genomics (RECOMB-CG), 2012. (to appear

    On the number of two-dimensional threshold functions

    Full text link
    A two-dimensional threshold function of k-valued logic can be viewed as coloring of the points of a k x k square lattice into two colors such that there exists a straight line separating points of different colors. For the number of such functions only asymptotic bounds are known. We give an exact formula for the number of two-dimensional threshold functions and derive more accurate asymptotics.Comment: 17 pages, 2 figure
    corecore