3 research outputs found

    Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets

    Get PDF
    Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed

    RNA single strands bind to a conserved surface of the major cold shock protein in crystals and solution

    Get PDF
    Bacterial cold shock proteins (CSPs) regulate the cellular response to temperature downshift. Their general principle of function involves RNA chaperoning and transcriptional antitermination. Here we present two crystal structures of cold shock protein B from Bacillus subtilis (Bs-CspB) in complex with either a hexanucleotide (5′-UUUUUU-3′) or heptanucleotide (5′-GUCUUUA-3′) single-stranded RNA (ssRNA). Hydrogen bonds and stacking interactions between RNA bases and aromatic sidechains characterize individual binding subsites. Additional binding subsites which are not occupied by the ligand in the crystal structure were revealed by NMR spectroscopy in solution on Bs-CspB·RNA complexes. Binding studies demonstrate that Bs-CspB associates with ssDNA as well as ssRNA with moderate sequence specificity. Varying affinities of oligonucleotides are reflected mainly in changes of the dissociation rates. The generally lower binding affinity of ssRNA compared to its ssDNA analog is attributed solely to the substitution of thymine by uracil bases in RNA

    T-rich DNA single strands bind to a preformed site on the bacterial cold shock protein Bs-CspB

    No full text
    Bacterial cold shock proteins (CSPs) are involved in cellular adaptation to cold stress. They bind to single-stranded nucleic acids with a K(D) value in the micro- to nanomolar range. Here we present the structure of the Bacillus subtilis CspB (Bs-CspB) in complex with hexathymidine (dT(6)) at a resolution of 1.78 A. Bs-CspB binds to dT(6) with nanomolar affinity via an amphipathic interface on the protein surface. Individual binding subsites interact with single nucleobases through stacking interactions and hydrogen bonding. The sugar-phosphate backbone and the methyl groups of the thymine nucleobases remain solvent exposed and are not contacted by protein groups. Fluorescence titration experiments monitoring the binding of oligopyrimidines to Bs-CspB reveal binding preferences at individual subsites and allow the design of an optimised heptapyrimidine ligand, which is bound with sub-nanomolar affinity. This study reveals the stoichiometry and sequence determinants of the binding of single-stranded nucleic acids to a preformed site on Bs-CspB and thus provides the structural basis of the RNA chaperone and transcription antitermination activities of the CSP
    corecore