360 research outputs found

    QCDOC: A 10-teraflops scale computer for lattice QCD

    Get PDF
    The architecture of a new class of computers, optimized for lattice QCD calculations, is described. An individual node is based on a single integrated circuit containing a PowerPC 32-bit integer processor with a 1 Gflops 64-bit IEEE floating point unit, 4 Mbyte of memory, 8 Gbit/sec nearest-neighbor communications and additional control and diagnostic circuitry. The machine's name, QCDOC, derives from ``QCD On a Chip''.Comment: Lattice 2000 (machines) 8 pages, 4 figure

    Status of and performance estimates for QCDOC

    Get PDF
    QCDOC is a supercomputer designed for high scalability at a low cost per node. We discuss the status of the project and provide performance estimates for large machines obtained from cycle accurate simulation of the QCDOC ASIC.Comment: 3 pages 1 figure. Lattice2002(machines

    Domain Wall Fermions in Quenched Lattice QCD

    Get PDF
    We study the chiral properties and the validity of perturbation theory for domain wall fermions in quenched lattice QCD at beta=6.0. The explicit chiral symmetry breaking term in the axial Ward-Takahashi identity is found to be very small already at Ns=10, where Ns is the size of the fifth dimension, and its behavior seems consistent with an exponential decay in Ns within the limited range of Ns we explore. From the fact that the critical quark mass, at which the pion mass vanishes as in the case of the ordinary Wilson-type fermion, exists at finite Ns, we point out that this may be a signal of the parity broken phase and investigate the possible existence of such a phase in this model at finite Ns. The rho and pi meson decay constants obtained from the four-dimensional local currents with the one-loop renormalization factor show a good agreement with those obtained from the conserved currents

    Speeding up finite step-size updating of full QCD on the lattice

    Get PDF
    We propose various improvements of finite step-size updating for full QCD on the lattice that might turn finite step-size updating into a viable alternative to the hybrid Monte Carlo algorithm. These improvements are noise reduction of the noisy estimator of the fermion determinant, unbiased inclusion of the hopping parameter expansion and a multi-level Metropolis scheme. First numerical tests are performed for the 2 dimensional Schwinger model with two flavours of Wilson fermions and for QCD two flavours of Wilson fermions and Schr"odinger functional boundary conditions.Comment: 22 pages, 1 figur

    Hardware and software status of QCDOC

    Full text link
    QCDOC is a massively parallel supercomputer whose processing nodes are based on an application-specific integrated circuit (ASIC). This ASIC was custom-designed so that crucial lattice QCD kernels achieve an overall sustained performance of 50% on machines with several 10,000 nodes. This strong scalability, together with low power consumption and a price/performance ratio of $1 per sustained MFlops, enable QCDOC to attack the most demanding lattice QCD problems. The first ASICs became available in June of 2003, and the testing performed so far has shown all systems functioning according to specification. We review the hardware and software status of QCDOC and present performance figures obtained in real hardware as well as in simulation.Comment: Lattice2003(machine), 6 pages, 5 figure

    Localization and chiral symmetry in 2+1 flavor domain wall QCD

    Full text link
    We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a 163×3216^3\times 32 space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings a11.6a^{-1} \ge 1.6 GeV.Comment: 59 Pages, 23 figures, 1 MPG linke

    The Influence of Orthopedic Surgery on Circulating Metabolite Levels, and their Associations with the Incidence of Postoperative Delirium

    Get PDF
    The mechanisms underlying the occurrence of postoperative delirium development are unclear and measurement of plasma metabolites may improve understanding of its causes. Participants (n = 54) matched for age and gender were sampled from an observational cohort study investigating postoperative delirium. Participants were ≥65 years without a diagnosis of dementia and presented for primary elective hip or knee arthroplasty. Plasma samples collected pre-and postoperatively were grouped as either control (n = 26, aged: 75.8 ± 5.2) or delirium (n = 28, aged: 76.2 ± 5.7). Widespread changes in plasma metabolite levels occurred following surgery. The only metabolites significantly differing between corresponding control and delirium samples were ornithine and spermine. In delirium cases, ornithine was 17.6% higher preoperatively, and spermine was 12.0% higher postoperatively. Changes were not associated with various perioperative factors. In binary logistic regression modeling, these two metabolites did not confer a significantly increased risk of delirium. These findings support the hypothesis that disturbed polyamine metabolism is an underlying factor in delirium that warrants further investigation

    Carbenic nitrile imines: Properties and reactivity

    Get PDF
    Structures and properties of nitrile imines were investigated computationally at B3LYP and CCSD(T) levels. Whereas NBO analysis at the B3LYP DFT level invariably predicts a propargylic electronic structure, CCSD(T) calculations permit a clear distinction between propargylic, allenic, and carbenic structures. Nitrile imines with strong IR absorptions above ca. 2150 cm-1 have propargylic structures with a CN triple bond (RCNNSiMe 3 and R2BCNNBR2), and those with IR absorptions below ca. 2150 cm-1 are allenic (HCNNH, PhCNNH, and HCNNPh). Nitrile imines lacking significant cumulenic IR absorptions at 1900-2200 cm -1 are carbenic (R-(C:)-N=N-R′). Electronegative but lone pair-donating groups NR2, OR, and F stabilize the carbenic form of nitrile imines in the same way they stabilize "normal" singlet carbenes, including N-heterocyclic carbenes. NBO analyses at the CCSD(T) level confirm the classification into propargylic, allenic, and carbenic reactivity types. Carbenic nitrile imines are predicted to form azoketenes 21 with CO, to form [2+2] and [2+4] cycloadducts and borane adducts, and to cyclize to 1H-diazirenes of the type 24 in mildly exothermic reactions with activation energies in the range 29-38 kcal/mol. Such reactions will be readily accessible photochemically and thermally, e.g., under the conditions of matrix photolysis and flash vacuum thermolysis

    2+1 flavor domain wall QCD on a (2 fm)^3 lattice: light meson spectroscopy with Ls = 16

    Full text link
    We present results for light meson masses and pseudoscalar decay constants from the first of a series of lattice calculations with 2+1 dynamical flavors of domain wall fermions and the Iwasaki gauge action. The work reported here was done at a fixed lattice spacing of about 0.12 fm on a 16^3\times32 lattice, which amounts to a spatial volume of (2 fm)^3 in physical units. The number of sites in the fifth dimension is 16, which gives m_{res} = 0.00308(4) in these simulations. Three values of input light sea quark masses, m_l^{sea} \approx 0.85 m_s, 0.59 m_s and 0.33 m_s were used to allow for extrapolations to the physical light quark limit, whilst the heavier sea quark mass was fixed to approximately the physical strange quark mass m_s. The exact rational hybrid Monte Carlo algorithm was used to evaluate the fractional powers of the fermion determinants in the ensemble generation. We have found that f_\pi = 127(4) MeV, f_K = 157(5) MeV and f_K/f_\pi = 1.24(2), where the errors are statistical only, which are in good agreement with the experimental values.Comment: RBC and UKQCD Collaborations. 17 pages, 14 figures. Typeset with ReVTEX4. v2: replaced with the version published in PRD with improved introductio

    First results from 2+1-Flavor Domain Wall QCD: Mass Spectrum, Topology Change and Chiral Symmetry with Ls=8L_s=8

    Get PDF
    We present results for the static interquark potential, light meson and baryon masses, and light pseudoscalar meson decay constants obtained from simulations of domain wall QCD with one dynamical flavour approximating the ss quark, and two degenerate dynamical flavours with input bare masses ranging from msm_s to ms/4m_s/4 approximating the uu and dd quarks. We compare these quantities obtained using the Iwasaki and DBW2 improved gauge actions, and actions with larger rectangle coefficients, on 163×3216^3\times32 lattices. We seek parameter values at which both the chiral symmetry breaking residual mass due to the finite lattice extent in the fifth dimension and the Monte Carlo time history for topological charge are acceptable for this set of quark masses at lattice spacings above 0.1 fm. We find that the Iwasaki gauge action is best, demonstrating the feasibility of using QCDOC to generate ensembles which are good representations of the QCD path integral on lattices of up to 3 fm in spatial extent with lattice spacings in the range 0.09-0.13 fm. Despite large residual masses and a limited number of sea quark mass values with which to perform chiral extrapolations, our results for light hadronic physics scale and agree with experimental measurements within our statistical uncertainties.Comment: RBC and UKQCD Collaborations. 82 pages, 34 figures Typos correcte
    corecore