296 research outputs found

    Generalized Supersymmetric Perturbation Theory

    Full text link
    Using the basic ingredient of supersymmetry, we develop a simple alternative approach to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wave functions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.Comment: 13 pages article in LaTEX (uses standard article.sty). No Figures. Sent to Ann. Physics (2004

    Quantum mechanical sum rules for two model systems

    Full text link
    Sum rules have played an important role in the development of many branches of physics since the earliest days of quantum mechanics. We present examples of one-dimensional quantum mechanical sum rules and apply them in two familiar systems, the infinite well and the single delta-function potential. These cases illustrate the different ways in which such sum rules can be realized, and the varying mathematical techniques by which they can be confirmed. Using the same methods, we also evaluate the second-order energy shifts arising from the introduction of a constant external field, namely the Stark effect.Comment: 23 pages, no figures, to appear in Am. J. Phy

    Dirac Hartree-Fock for Finite Nuclei Employing realistic Forces

    Get PDF
    We discuss two different approximation schemes for the self-consistent solution of the {\it relativistic} Brueckner-Hartree-Fock equation for finite nuclei. In the first scheme, the Dirac effects are deduced from corresponding nuclear matter calculations, whereas in the second approach the local-density approximation is used to account for the effects of correlations. The results obtained by the two methods are very similar. Employing a realistic one-boson-exchange potential (Bonn~A), the predictions for energies and radii of 16^{16}O and 40^{40}Ca come out in substantially better agreement with experiment as compared to non-relativistic approaches. As a by-product of our study, it turns out that the Fock exchange-terms, ignored in a previous investigation, are not negligible.Comment:

    Eigenvalue bounds for polynomial central potentials in d dimensions

    Full text link
    If a single particle obeys non-relativistic QM in R^d and has the Hamiltonian H = - Delta + f(r), where f(r)=sum_{i = 1}^{k}a_ir^{q_i}, 2\leq q_i < q_{i+1}, a_i \geq 0,thentheeigenvaluesE=En(d)(λ)aregivenapproximatelybythesemiclassicalexpressionE=minr>0[1r2+i=1kai(Pir)qi].ItisprovedthatthisformulayieldsalowerboundifPi=Pn(d)(q1),anupperboundif, then the eigenvalues E = E_{n\ell}^{(d)}(\lambda) are given approximately by the semi-classical expression E = \min_{r > 0}[\frac{1}{r^2} + \sum_{i = 1}^{k}a_i(P_ir)^{q_i}]. It is proved that this formula yields a lower bound if P_i = P_{n\ell}^{(d)}(q_1), an upper bound if P_i = P_{n\ell}^{(d)}(q_k) and a general approximation formula if P_i = P_{n\ell}^{(d)}(q_i). For the quantum anharmonic oscillator f(r)=r^2+\lambda r^{2m},m=2,3,... in d dimension, for example, E = E_{n\ell}^{(d)}(\lambda) is determined by the algebraic expression \lambda={1\over \beta}({2\alpha(m-1)\over mE-\delta})^m({4\alpha \over (mE-\delta)}-{E\over (m-1)}) where \delta={\sqrt{E^2m^2-4\alpha(m^2-1)}} and \alpha, \beta are constants. An improved lower bound to the lowest eigenvalue in each angular-momentum subspace is also provided. A comparison with the recent results of Bhattacharya et al (Phys. Lett. A, 244 (1998) 9) and Dasgupta et al (J. Phys. A: Math. Theor., 40 (2007) 773) is discussed.Comment: 13 pages, no figure

    The Stark effect in linear potentials

    Full text link
    We examine the Stark effect (the second-order shift in the energy spectrum due to an external constant force) for two 1-dimensional model quantum mechanical systems described by linear potentials, the so-called quantum bouncer (defined by V(z) = Fz for z>0 and V(z) infinite for z<0) and the symmetric linear potential (given by V(z) = F|z|). We show how straightforward use of the most obvious properties of the Airy function solutions and simple Taylor expansions give closed form results for the Stark shifts in both systems. These exact results are then compared to other approximation techniques, such as perturbation theory and WKB methods. These expressions add to the small number of closed-form descriptions available for the Stark effect in model quantum mechanical systems.Comment: 15 pages. To appear in Eur. J. Phys. Needs Institute of Physics (iopart) style file

    Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419

    Get PDF
    Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome se-quence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951 bp, 1,245,408 bp and 219,313 bp. The smallest plasmid is a fea-ture unique to this medic microsymbiont

    Comparison of techniques for computing shell-model effective operators

    Get PDF
    Different techniques for calculating effective operators within the framework of the shell model using the same effective interaction and the same excitation spaces are presented. Starting with the large-basis no-core approach, we compare the time-honored perturbation-expansion approach and a model-space truncation approach. Results for the electric quadrupole and magnetic dipole operators are presented for 6^6Li. The convergence trends and dependence of the effective operators on differing excitation spaces and Pauli Q-operators is studied. In addition, the dependence of the electric-quadrupole effective charge on the harmonic-oscillator frequency and the mass number, for A=5,6, is investigated in the model-space truncation approach.Comment: 18 pages. REVTEX. 4 PostScript figure

    Nuclear Self-energy and Realistic Interactions

    Get PDF
    The structure of nucleon self-energy in nuclear matter is evaluated for various realistic models of the nucleon-nucleon (NN) interaction. Starting from the Brueckner-Hartree-Fock approximation without the usual angle-average approximation, the effects of hole-hole contributions and a self-consistent treatment within the framework of the Green function approach are investigated. Special attention is paid to the predictions for the spectral function originating from various models of the NN interaction which all yield an accurate fit for the NN phase shifts.Comment: 26 pages, 12 figure
    corecore