296 research outputs found
Generalized Supersymmetric Perturbation Theory
Using the basic ingredient of supersymmetry, we develop a simple alternative
approach to perturbation theory in one-dimensional non-relativistic quantum
mechanics. The formulae for the energy shifts and wave functions do not involve
tedious calculations which appear in the available perturbation theories. The
model applicable in the same form to both the ground state and excited bound
states, unlike the recently introduced supersymmetric perturbation technique
which, together with other approaches based on logarithmic perturbation theory,
are involved within the more general framework of the present formalism.Comment: 13 pages article in LaTEX (uses standard article.sty). No Figures.
Sent to Ann. Physics (2004
Quantum mechanical sum rules for two model systems
Sum rules have played an important role in the development of many branches
of physics since the earliest days of quantum mechanics. We present examples of
one-dimensional quantum mechanical sum rules and apply them in two familiar
systems, the infinite well and the single delta-function potential. These cases
illustrate the different ways in which such sum rules can be realized, and the
varying mathematical techniques by which they can be confirmed. Using the same
methods, we also evaluate the second-order energy shifts arising from the
introduction of a constant external field, namely the Stark effect.Comment: 23 pages, no figures, to appear in Am. J. Phy
Dirac Hartree-Fock for Finite Nuclei Employing realistic Forces
We discuss two different approximation schemes for the self-consistent
solution of the {\it relativistic} Brueckner-Hartree-Fock equation for finite
nuclei. In the first scheme, the Dirac effects are deduced from corresponding
nuclear matter calculations, whereas in the second approach the local-density
approximation is used to account for the effects of correlations. The results
obtained by the two methods are very similar. Employing a realistic
one-boson-exchange potential (Bonn~A), the predictions for energies and radii
of O and Ca come out in substantially better agreement with
experiment as compared to non-relativistic approaches. As a by-product of our
study, it turns out that the Fock exchange-terms, ignored in a previous
investigation, are not negligible.Comment:
Eigenvalue bounds for polynomial central potentials in d dimensions
If a single particle obeys non-relativistic QM in R^d and has the Hamiltonian
H = - Delta + f(r), where f(r)=sum_{i = 1}^{k}a_ir^{q_i}, 2\leq q_i < q_{i+1},
a_i \geq 0P_i =
P_{n\ell}^{(d)}(q_k) and a general approximation formula if P_i =
P_{n\ell}^{(d)}(q_i). For the quantum anharmonic oscillator f(r)=r^2+\lambda
r^{2m},m=2,3,... in d dimension, for example, E = E_{n\ell}^{(d)}(\lambda) is
determined by the algebraic expression
\lambda={1\over \beta}({2\alpha(m-1)\over mE-\delta})^m({4\alpha \over
(mE-\delta)}-{E\over (m-1)}) where \delta={\sqrt{E^2m^2-4\alpha(m^2-1)}} and
\alpha, \beta are constants. An improved lower bound to the lowest eigenvalue
in each angular-momentum subspace is also provided. A comparison with the
recent results of Bhattacharya et al (Phys. Lett. A, 244 (1998) 9) and Dasgupta
et al (J. Phys. A: Math. Theor., 40 (2007) 773) is discussed.Comment: 13 pages, no figure
The Stark effect in linear potentials
We examine the Stark effect (the second-order shift in the energy spectrum
due to an external constant force) for two 1-dimensional model quantum
mechanical systems described by linear potentials, the so-called quantum
bouncer (defined by V(z) = Fz for z>0 and V(z) infinite for z<0) and the
symmetric linear potential (given by V(z) = F|z|). We show how straightforward
use of the most obvious properties of the Airy function solutions and simple
Taylor expansions give closed form results for the Stark shifts in both
systems. These exact results are then compared to other approximation
techniques, such as perturbation theory and WKB methods. These expressions add
to the small number of closed-form descriptions available for the Stark effect
in model quantum mechanical systems.Comment: 15 pages. To appear in Eur. J. Phys. Needs Institute of Physics
(iopart) style file
Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419
Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome se-quence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951 bp, 1,245,408 bp and 219,313 bp. The smallest plasmid is a fea-ture unique to this medic microsymbiont
Comparison of techniques for computing shell-model effective operators
Different techniques for calculating effective operators within the framework
of the shell model using the same effective interaction and the same excitation
spaces are presented. Starting with the large-basis no-core approach, we
compare the time-honored perturbation-expansion approach and a model-space
truncation approach. Results for the electric quadrupole and magnetic dipole
operators are presented for Li. The convergence trends and dependence of
the effective operators on differing excitation spaces and Pauli Q-operators is
studied. In addition, the dependence of the electric-quadrupole effective
charge on the harmonic-oscillator frequency and the mass number, for A=5,6, is
investigated in the model-space truncation approach.Comment: 18 pages. REVTEX. 4 PostScript figure
Nuclear Self-energy and Realistic Interactions
The structure of nucleon self-energy in nuclear matter is evaluated for
various realistic models of the nucleon-nucleon (NN) interaction. Starting from
the Brueckner-Hartree-Fock approximation without the usual angle-average
approximation, the effects of hole-hole contributions and a self-consistent
treatment within the framework of the Green function approach are investigated.
Special attention is paid to the predictions for the spectral function
originating from various models of the NN interaction which all yield an
accurate fit for the NN phase shifts.Comment: 26 pages, 12 figure
- …