3 research outputs found
Discussion of Dr. Charles F. Ash's Paper on "a Success or Failure in Bridge-Work: Which?" (Page 591)
Chain length-dependent cooperativity in fatty acid binding and oxidation by cytochrome P450BM3 (CYP102A1)
Fatty acid binding and oxidation kinetics for wild type P450(sub)BM3 (CYP102A1) from Bacillus megaterium have been found to display chain length-dependent homotropic behavior. Laurate and 13-methyl-myristate display Michaelis-Menten behavior while there are slight deviations with myristate at low ionic strengths. Palmitate shows Michaelis-Menten kinetics and hyperbolic binding behavior in 100 mmol/L phosphate, pH 7.4, but sigmoidal kinetics (with an apparent intercept) in low ionic strength buffers and at physiological phosphate concentrations. In low ionic strength buffers both the heme domain and the full-length enzyme show complex palmitate binding behavior that indicates a minimum of four fatty acid binding sites, with high cooperativity for the binding of the fourth palmitate molecule, and the full-length enzyme showing tighter palmitate binding than the heme domain. The first flavin-to-heme electron transfer is faster for laurate, myristate and palmitate in 100 mmol/L phosphate than in 50mmol/L Tris (pH 7.4), yet each substrate induces similar high-spin heme content. For palmitate in low phosphate buffer concentrations, the rate constant of the first electron transfer is much larger than k(sub)cat. The results suggest that phosphate has a specific effect in promoting the first electron transfer step, and that P450(sub)BM3 could modulate Bacillus membrane morphology and fluidity via palmitate oxidation in response to the external phosphate concentration.Benjamin Rowlatt, Jake A. Yorke, Anthony J. Strong, Christopher J. C. Whitehouse, Stephen G. Bell, Luet-Lok Won
Casting Metals in Dentistry: Past - Present - Future
This article deals mainly with the development of dental casting techniques and formulation of the different groups of alloys used in the fabrication of ceramo-metal restorations. It is recognized that in order for the quality of dental cast restorations to be improved, having alloys with the proper composition is not enough. Biocompatibility, good mechanical and physical properties, longevity of the restoration, compatibility with porcelain, and a simple manipulative technique are as important. Researchers have contributed to different aspects of dental castings and have made cast restorations what they are today. Unfortunately, much of the original basic research has been overlooked by present investigators, who have duplicated studies conducted in the past without realizing that the study had already been performed and the research had been published. The main reason for this is that abstracts of articles published prior to 1975 are not available through a library computer-search system. To obtain copies of articles published prior to 1975, one has to search the literature to know where they were published. This article provides references for much of the past work in this area. Also, dental libraries do not carry copies of U.S. patents. This places the majority of researchers located at dental schools at a disadvantage. They are not familiar with what the patents claim, what is taught, and why certain elements are added or eliminated from alloys and investment materials. This article also provides the numbers of many U.S. patents. By having the patent number, one can obtain the text of the patent from the U.S. Patent Office in Washington, DC. Since esthetics plays an important role in today's society, emphasis will be given only to alloys designed for fabrication of ceramo-metal restorations. Many ceramo-metal alloys are available today, and they are classified differently by different individuals. In this article, classification will be based on the major components of these alloys, as well as on a chronological introduction of one group leading to the development of the next group. Based on this, one can classify these alloys into six major groups. Chemical composition, properties, and the developers of these alloys, along with their U.S. patents, are given. Recently, two types of all-ceramic restorations have been introduced. The main advantage of the all-ceramic restoration is its superior esthetic quality compared with that of ceramo-metal restorations. Their main disadvantages are low strength and ductility. Their strength, however, is sufficient for single-unit restorations, but not for bridgework. The use of titanium for dental restorations has also been studied, and it has been found to be suitable. Future Studies - Future work should be devoted to the following: (1) the development of stronger and more ductile ceramic materials: (2) further study of the promising palladium alloys from the noble metal group and titanium alloys from the base metal group; (3) the development of easier and less-time-consuming techniques for the fabrication of dental appliances; (4) the development of a powder technique rather than a cast technique for future fabrication methods; and (5) the development of new laboratory equipment, e.g., a single sintering oven capable of sintering both ceramic and metallic particles, which would be accepted if the powder technique is developed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67759/2/10.1177_08959374880020011701.pd