5 research outputs found

    Effect of sex and seasons of the year on hematologic and serum biochemical variables of captive brown brocket deer (Mazama gouazoubira)

    Full text link
    The Brown brocket deer (Mazama gouazoubira) is the most common free-living and captive deer in South America, especially in Brazil, and has great ecological and scientific significance. However, data on hematological and biochemical parameters in brown brocket deer are scarce. The goal of this study was to establish reference ranges for hematological and biochemical parameters of Mazama gouazoubira, comparing differences during the seasons of the year and between sex. Blood samples from ten adult healthy brown brocket deer (6 female and 4 male) were collected during daytime, monthly, during 12 months. The animals were maintained in individual stable, protected from noise and fed ad libitum with commercial ration and green fodder. For blood collection, animals were submitted to physical restrain for no longer than 2 minutes. The following parameters were determined: red blood cell count (RBC), haemoglobin concentration, packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), white blood cell count (WBC), platelet count, enzyme activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) and serum levels of alkaline phosphatase (ALP), creatine kinase (CK), total protein (TP), albumin, cholesterol, total calcium, ionic calcium, sodium, potassium, magnesium, triglycerides, creatinine and urea. Values were compared according to season and sex. RBC count, WBC count and MCV suggested seasonal influence. Haemoglobin concentration, PCV and MCV were influenced by sex. Serum concentration of total calcium, ionic calcium, sodium, potassium and magnesium were influenced by season. Serum magnesium was also influenced by sex. The blood parameters herein reported may be useful as reference values for diagnostic and prognostic purposes in captive brown-brocket deer

    Forage fermentation patterns and their implications for herbivore ingesta retention times

    Full text link
    1. Differences in digestive physiology between browsing and grazing ruminant feeding types have been discussed extensively. The potentially underlying differences in fermentative behaviour of forage plants have received much less attention. 2. In this study, different groups of temperate forage plants (grasses, browse leaves and twigs, herbs and legumes) were compared in their chemical composition and fementative behaviour. They were evaluated via an in vitro fermentation system (modified Hohenheim gas test), and relevant fermentation parameters such as maximal gas production and relative gas production rate were calculated. 3. Grasses generally had a higher NDF (neutral detergent fibre = total cell wall) content than browse leaves, herbs and legumes, while browse leaf cell wall was more lignified than that of herbs, legumes and grass. 4. With respect to fermentation parameters, grass had the highest maximal gas production, followed by herbs and legumes, and the lowest maximal gas production in browse leaves and twigs. Relative gas production rate was highest in herbs and legumes, while that of grass and browse was lower. As expected, browse twigs had the lowest nutritional value. 5. Dicot material reached given setpoints of absolute gas production rate like 1.0 or 0.5 mL gas/(200 mg dry matter x h) faster than grass material. Based on these results, a longer passage time of food particles seems to be adaptive for grazing ruminants, as over a wide range of fermentation times, absolute gas production rate is higher in grass compared with dicots. Especially for browse leaves, a higher intake level should be expected to balance energy requirements of animals relying on this forage type
    corecore