119 research outputs found

    Emerging genotype-phenotype relationships in patients with large NF1 deletions.

    Get PDF
    The most frequent recurring mutations in neurofibromatosis type 1 (NF1) are large deletions encompassing the NF1 gene and its flanking regions (NF1 microdeletions). The majority of these deletions encompass 1.4-Mb and are associated with the loss of 14 protein-coding genes and four microRNA genes. Patients with germline type-1 NF1 microdeletions frequently exhibit dysmorphic facial features, overgrowth/tall-for-age stature, significant delay in cognitive development, large hands and feet, hyperflexibility of joints and muscular hypotonia. Such patients also display significantly more cardiovascular anomalies as compared with patients without large deletions and often exhibit increased numbers of subcutaneous, plexiform and spinal neurofibromas as compared with the general NF1 population. Further, an extremely high burden of internal neurofibromas, characterised by >3000 ml tumour volume, is encountered significantly, more frequently, in non-mosaic NF1 microdeletion patients than in NF1 patients lacking such deletions. NF1 microdeletion patients also have an increased risk of malignant peripheral nerve sheath tumours (MPNSTs); their lifetime MPNST risk is 16–26%, rather higher than that of NF1 patients with intragenic NF1 mutations (8–13%). NF1 microdeletion patients, therefore, represent a high-risk group for the development of MPNSTs, tumours which are very aggressive and difficult to treat. Co-deletion of the SUZ12 gene in addition to NF1 further increases the MPNST risk in NF1 microdeletion patients. Here, we summarise current knowledge about genotype–phenotype relationships in NF1 microdeletion patients and discuss the potential role of the genes located within the NF1 microdeletion interval whose haploinsufficiency may contribute to the more severe clinical phenotyp

    The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis

    Get PDF
    Schwannomatosis is characterized by the predisposition to develop multiple schwannomas and, less commonly, meningiomas. Despite the clinical overlap with neurofibromatosis type 2 (NF2), schwannomatosis is not caused by germline NF2 gene mutations. Instead, germline mutations of either the SMARCB1 or LZTR1 tumour suppressor genes have been identified in 86% of familial and 40% of sporadic schwannomatosis patients. In contrast to patients with rhabdoid tumours, which are due to complete loss-of-function SMARCB1 mutations, individuals with schwannomatosis harbour predominantly hypomorphic SMARCB1 mutations which give rise to the synthesis of mutant proteins with residual function that do not cause rhabdoid tumours. Although biallelic mutations of SMARCB1 or LZTR1 have been detected in the tumours of patients with schwannomatosis, the classical two-hit model of tumorigenesis is insufficient to account for schwannoma growth, since NF2 is also frequently inactivated in these tumours. Consequently, tumorigenesis in schwannomatosis must involve the mutation of at least two different tumour suppressor genes, an occurrence frequently mediated by loss of heterozygosity of large parts of chromosome 22q harbouring not only SMARCB1 and LZTR1 but also NF2. Thus, schwannomatosis is paradigmatic for a tumour predisposition syndrome caused by the concomitant mutational inactivation of two or more tumour suppressor genes. This review provides an overview of current models of tumorigenesis and mutational patterns underlying schwannomatosis that will ultimately help to explain the complex clinical presentation of this rare disease

    Do hormonal contraceptives stimulate growth of neurofibromas? A survey on 59 NF1 patients

    Get PDF
    BACKGROUND: Neurofibromas are benign tumors of the peripheral nerves and hallmark of neurofibromatosis type 1 (NF1), a tumor suppressor gene syndrome. Neurofibromas mostly start developing at puberty and can increase in size and number during pregnancy. Expression of progesterone receptors has been found in 75% of the tumors. Many female NF1 patients are thus concerned about the possibility that hormonal contraceptives may stimulate the growth of their neurofibromas. METHODS: A survey was carried out on 59 female NF1 patients who are practicing or have practiced hormonal contraception to examine the effect of the various contraceptives on the growth of neurofibromas. RESULTS: Majority (53 out of 58) of patients who received oral estrogen-progestogen or pure progestogen preparations reported no associated tumor growth. In contrast, significant tumor growth was reported by two patients who received depot contraceptive containing high dose of synthetic progesterone. CONCLUSIONS: Oral contraceptives do not seem to stimulate the growth of neurofibromas in NF1 patients. High doses of progesterone might stimulate the growth of neurofibromas and deserve more caution

    Non-coding RNA ANRIL and the number of plexiform neurofibromas in patients with NF1microdeletions

    Get PDF
    BACKGROUND: Neurofibromatosis type-1 (NF1) is caused by mutations of the NF1 gene at 17q11.2. In 95% of non-founder NF1 patients, NF1 mutations are identifiable by means of a comprehensive mutation analysis. 5-10% of these patients harbour microdeletions encompassing the NF1 gene and its flanking regions. NF1 is characterised by tumours of the peripheral nerve sheaths, the pathognomonic neurofibromas. Considerable inter- and intra-familial variation in expressivity of the disease has been observed which is influenced by genetic modifiers unrelated to the constitutional NF1 mutation. The number of plexiform neurofibromas (PNF) in NF1 patients is a highly heritable genetic trait. Recently, SNP rs2151280 located within the non-coding RNA gene ANRIL at 9p21.3, was identified as being strongly associated with PNF number in a family-based association study. The T-allele of rs2151280, which correlates with reduced ANRIL expression, appears to be associated with higher PNF number. ANRIL directly binds to the SUZ12 protein, an essential component of polycomb repressive complex 2, and is required for SUZ12 occupancy of the CDKN2A/CDKN2B tumour suppressor genes as well as for their epigenetic silencing. METHODS: Here, we explored a potential association of PNF number and PNF volume with SNP rs2151280 in 29 patients with constitutional NF1 microdeletions using the exact Cochran-Armitage test for trends and the exact Mann–Whitney–Wilcoxon test. Both the PNF number and total tumour volume in these 29 NF1 patients were assessed by whole-body MRI. The NF1 microdeletions observed in these 29 patients encompassed the NF1 gene as well as its flanking regions, including the SUZ12 gene. RESULTS: In the 29 microdeletion patients investigated, neither the PNF number nor PNF volume was found to be associated with the T-allele of rs2151280. CONCLUSION: Our findings imply that, at least in patients with NF1 microdeletions, PNF susceptibility is not associated with rs2151280. Although somatic inactivation of the NF1 wild-type allele is considered to be the PNF-initiating event in NF1 patients with intragenic mutations and patients with NF1 microdeletions, both patient groups may differ with regard to tumour progression because of the heterozygous constitutional deletion of SUZ12 present only in patients with NF1 microdeletions

    Atypical NF1 microdeletions: challenges and opportunities for Genotype/Phenotype correlations in patients with large NF1 deletions

    Get PDF
    Patients with neurofibromatosis type 1 (NF1) and type 1 NF1 deletions often exhibit more severe clinical manifestations than patients with intragenic NF1 gene mutations, including facial dysmorphic features, overgrowth, severe global developmental delay, severe autistic symptoms and considerably reduced cognitive abilities, all of which are detectable from a very young age. Type 1 NF1 deletions encompass 1.4 Mb and are associated with the loss of 14 protein-coding genes, including NF1 and SUZ12. Atypical NF1 deletions, which do not encompass all 14 protein-coding genes located within the type 1 NF1 deletion region, have the potential to contribute to the delineation of the genotype/phenotype relationship in patients with NF1 microdeletions. Here, we review all atypical NF1 deletions reported to date as well as the clinical phenotype observed in the patients concerned. We compare these findings with those of a newly identified atypical NF1 deletion of 698 kb which, in addition to the NF1 gene, includes five genes located centromeric to NF1. The atypical NF1 deletion in this patient does not include the SUZ12 gene but does encompass CRLF3. Comparative analysis of such atypical NF1 deletions suggests that SUZ12 hemizygosity is likely to contribute significantly to the reduced cognitive abilities, severe global developmental delay and facial dysmorphisms observed in patients with type 1 NF1 deletions

    Cerebrovascular Insult as Presenting Symptom of Neurofibromatosis Type 2 in Children, Adolescents, and Young Adults

    Get PDF
    Background and Purpose: Neurofibromatosis Type 2 (NF2) is an autosomal-dominant tumor-prone disorder characterized by the manifestations of central nervous system lesions. However, the first clinical signs of disease are often non-tumorous. Cerebrovascular insults are known in NF2, however, not yet described as first symptom in young NF2 patients.Methods: Magnetic resonance image scans of 298 NF2 patients treated in our neurofibromatosis center in Tübingen from 2003 to 2017 were retrospectively evaluated focusing on presence of aneurysms and ischemic stroke. Clinical data were used to clarify whether or not ischemic stroke or aneurysm rupture were the first presentation of disease. Blood of the patients were subjected to genetic screening for constitutional NF2 mutations.Results: We identified 5 cases under age of 25 years with aneurysms or ischemic stroke. Among them three had ischemic strokes of the brain stem and one aneurysmal subarachnoid hemorrhage as the first symptom of the disease. Incidental finding of 2 intracranial aneurysm occurred in one patient. All aneurysms were clipped. Patients with ischemia suffered from dysarthria, gait disturbances, dizziness, and hemiparesis. Residual signs of hemiparesis and dysarthria persisted in one patient. All others fully recovered from the cerebrovascular insult. Bilateral vestibular schwannomas and intracranial meningiomas were found in all five patients.Conclusions: A cerebrovascular insult in the vertebrobasilar territory may occur as first symptom of disease in young NF2 patients. The brain stem seems to be especially prone to ischemic stroke. Multicenter studies on large NF2 cohorts are needed to determine the prevalence and pattern of cerebrovascular insults and disease in NF2 patients

    Fine mapping of meiotic NAHR-associated crossovers causing large NF1 deletions

    Get PDF
    Large deletions encompassing the NF1 gene and its flanking regions belong to the group of genomic disorders caused by copy number changes that are mediated by the local genomic architecture. Although nonallelic homologous recombination (NAHR) is known to be a major mutational mechanism underlying such genomic copy number changes, the sequence determinants of NAHR location and frequency are still poorly understood since few high-resolution mapping studies of NAHR hotspots have been performed to date. Here, we have characterized two NAHR hotspots, PRS1 and PRS2, separated by 20 kb and located within the low-copy repeats NF1-REPa and NF1-REPc, which flank the human NF1 gene region. High-resolution mapping of the crossover sites identified in 78 type 1 NF1 deletions mediated by NAHR indicated that PRS2 is a much stronger NAHR hotspot than PRS1 since 80% of these deletions exhibited crossovers within PRS2, whereas 20% had crossovers within PRS1. The identification of the most common strand exchange regions of these 78 deletions served to demarcate the cores of the PRS1 and PRS2 hotspots encompassing 1026 and 1976 bp, respectively. Several sequence features were identified that may influence hotspot intensity and direct the positional preference of NAHR to the hotspot cores. These features include regions of perfect sequence identity encompassing 700 bp at the hotspot core, the presence of PRDM9 binding sites perfectly matching the consensus motif for the most common PRDM9 variant, specific pre-existing patterns of histone modification and open chromatin conformations that are likely to facilitate PRDM9 binding

    Growth dynamics of plexiform neurofibromas: a retrospective cohort study of 201 patients with neurofibromatosis 1

    Get PDF
    BACKGROUND: To examine the natural growth dynamics of internal plexiform neurofibromas (PNs) in patients with neurofibromatosis 1 (NF1). METHODS: Two hundred and one NF1 patients underwent whole body MRI (WBMRI). Tumour burden was estimated volumetrically. Non-parametric Spearman’s rho correlation coefficients were used to analyse the relationship of growth rate to tumour volume and age. Chi-squared and Mann–Whitney U tests were used for analysing the association of tumour occurrence with sex or age. Chi-squared tests were used to analyse the association of tumour growth with age group. RESULTS: Seventy-one of 171 patients with serial WBMRI exams had internal PNs (median follow up 2.2 years [1.1 to 4.9 years]). Median whole body tumour volume was 86.4 mL [5.2 to 5878.5 mL]) with a median growth rate of 3.7%/year (−13.4 to 111%/year) that correlated with larger whole body tumour volume (P<0.001) and lower age (P=0.004). No new PNs developed in 273.0 patient-years among patients without tumours. Rate of new tumour development among patients with PNs was 0.6%/year (95% confidence interval 0.02 to 3.4%). Twenty-seven (13.5%) tumours increased significantly and were more frequent among children (P<0.001). Growth rate of tumours was inversely correlated with age (Spearman’s rho=−0.330, P<0.001). Seventy-one (35.5%) tumours had smaller volumes on follow up (median −3.4%/year [−0.07% to −35.9%/year]). CONCLUSION: Children with NF1 and internal PNs are at risk for tumour growth. Most PNs grow slowly or not at all, and some decrease in size. New tumours are infrequent in NF1 patients with PNs and unlikely in patients without PNs

    Ultra-deep amplicon sequencing indicates absence of low-grade mosaicism with normal cells in patients with type-1 NF1 deletions

    Get PDF
    Different types of large NF1 deletion are distinguishable by breakpoint location and potentially also by the frequency of mosaicism with normal cells lacking the deletion. However, low-grade mosaicism with fewer than 10% normal cells has not yet been excluded for all NF1 deletion types since it is impossible to assess by the standard techniques used to identify such deletions, including MLPA and array analysis. Here, we used ultra-deep amplicon sequencing to investigate the presence of normal cells in the blood of 20 patients with type-1 NF1 deletions lacking mosaicism according to MLPA. The ultra-deep sequencing entailed the screening of 96 amplicons for heterozygous SNVs located within the NF1 deletion region. DNA samples from three previously identified patients with type-2 NF1 deletions and low-grade mosaicism with normal cells as determined by FISH or microsatellite marker analysis were used to validate our methodology. In these type-2 NF1 deletion samples, proportions of 5.3%, 6.6% and 15.0% normal cells, respectively, were detected by ultra-deep amplicon sequencing. However, using this highly sensitive method, none of the 20 patients with type-1 NF1 deletions included in our analysis exhibited low-grade mosaicism with normal cells in blood, thereby supporting the view that the vast majority of type-1 deletions are germline deletions

    Consideration of the haplotype diversity at nonallelic homologous recombination hotspots improves the precision of rearrangement breakpoint identification

    Get PDF
    Precise characterization of nonallelic homologous recombination (NAHR) breakpoints is key to identifying those features that influence NAHR frequency. Until now, analysis of NAHR-mediated rearrangements has generally been performed by comparison of the breakpoint-spanning sequences with the human genome reference sequence. We show here that the haplotype diversity of NAHR hotspots may interfere with breakpoint-mapping. We studied the transmitting parents of individuals with germline type-1 NF1 deletions mediated by NAHR within the paralogous recombination site 1 (PRS1) or paralogous recombination site 2 (PRS2) hotspots. Several parental wild-type PRS1 and PRS2 haplotypes were identified that exhibited considerable sequence differences with respect to the reference sequence, which also affected the number of predicted PRDM9-binding sites. Sequence comparisons between the parental wild-type PRS1 or PRS2 haplotypes and the deletion breakpoint-spanning sequences from the patients (method #2) turned out to be an accurate means to assign NF1 deletion breakpoints and proved superior to crude reference sequence comparisons that neglect to consider haplotype diversity (method #1). The mean length of the deletion breakpoint regions assigned by method #2 was 269-bp in contrast to 502-bp by method #1. Our findings imply that paralog-specific haplotype diversity of NAHR hotspots (such as PRS2) and population-specific haplotype diversity must be taken into account in order to accurately ascertain NAHR-mediated rearrangement breakpoints
    corecore