243 research outputs found
Is triple-positive serology for Epstein-Barr virus (VCA-IgG, VCA-IgM, EBNA-IgG) a specific feature of angioimmunoblastic T-cell lymphoma?
Purpose: We assessed the frequency of triple-positive serology (viral capsid antigen [VCA]-immunoglobulin G [IgG], VCA-immunoglobulin M, Epstein-Barr nuclear antigen-IgG) for Epstein-Barr virus (EBV) in a small number of patients with angioimmunoblastic T-cell lymphoma (AITL) at disease onset. Methods: Nine patients with newly diagnosed AITL were retrospectively enrolled in the present study. For all of them, EBV serology data were available. Results: Of 9 patients, 7 (77.7%) had a triple-positive serology (VCA-IgG, VCA-IgM, EBNA-IgG ) for EBV. These patients were characterized by bone marrow involvement, high incidence of thrombocytopenia, and poor prognosis according to Revised International Prognostic Index and Prognostic Index for Angioimmunoblastic T-cell Lymphoma scores. Conclusion: Assessment of both viremia and serology for EBV could be useful in patients with clinical and laboratory data suggesting lymphoma diagnosis; furthermore, although our data need to be validated in a larger cohort of patients, triple positivity for EBV serology might help to direct the diagnosis toward AITL
Immunological characterization of multipotent mesenchymal stromal cells--The International Society for Cellular Therapy (ISCT) working proposal.
Disclosure of interests: The authors have no commercial, proprietary, or financial interest in the products or companies described in this article.International audienceCultured mesenchymal stromal cells (MSCs) possess immune regulatory properties and are already used for clinical purposes, although preclinical data (both in vitro and in vivo in animal models) are not always homogeneous and unequivocal. However, the various MSC-based clinical approaches to treat immunological diseases would be significantly validated and strengthened by using standardized immune assays aimed at obtaining shared, reproducible and consistent data. Thus, the MSC Committee of the International Society for Cellular Therapy has decided to put forward for general discussion a working proposal for a standardized approach based on a critical view of literature data
The Evolving Knowledge on T and NK Cells in Classic Hodgkin Lymphoma: Insights into Novel Subsets Populating the Immune Microenvironment
Classic Hodgkin lymphoma (cHL) is a unique lymphoid neoplasm characterized by extensive immune infiltrates surrounding rare malignant Hodgkin Reed-Sternberg (HRS) cells. Different subsets of T and NK cells have long been recognized in the cHL microenvironment, yet their distinct contribution to disease pathogenesis has remained enigmatic. Very recently, novel platforms for high dimensional analysis of immune cells, such as single-cell RNA sequencing and mass cytometry, have revealed unanticipated insights into the composition of T- and NK-cell compartments in cHL. Advances in imaging techniques have better defined specific T-helper subpopulations physically interacting with neoplastic cells. In addition, the identification of novel cytotoxic subsets with an exhausted phenotype, typically enriched in cHL milieu, is shedding light on previously unrecognized immune evasion mechanisms. This review examines the immunological features and the functional properties of T and NK subsets recently identified in the cHL microenvironment, highlighting their pathological interplay with HRS cells. We also discuss how this knowledge can be exploited to predict response to immunotherapy and to design novel strategies to improve PD-1 blockade efficacy
Management of Chronic Myeloid Leukemia in Advanced Phase
Management of chronic myeloid leukemia (CML) in advanced phases remains a challenge also in the era of tyrosine kinase inhibitors (TKIs) treatment. Cytogenetic clonal evolution and development of resistant mutations represent crucial events that limit the benefit of subsequent therapies in these patients. CML is diagnosed in accelerated (AP) or blast phase (BP) in <5% of patients, and the availability of effective treatments for chronic phase (CP) has dramatically reduced progressions on therapy. Due to smaller number of patients, few randomized studies are available in this setting and evidences are limited. Nevertheless, three main scenarios may be drawn: (a) patients diagnosed in AP are at higher risk of failure as compared to CP patients, but if they achieve optimal responses with frontline TKI treatment their outcome may be similarly favorable; (b) patients diagnosed in BP may be treated with TKI alone or with TKI together with conventional chemotherapy regimens, and subsequent transplant decisions should rely on kinetics of response and individual transplant risk; (c) patients in CP progressing under TKI treatment represent the most challenging population and they should be treated with alternative TKI according to the mutational profile, optional chemotherapy in BP patients, and transplant should be considered in suitable cases after return to second CP. Due to lack of validated and reliable markers to predict blast crisis and the still unsatisfactory results of treatments in this setting, prevention of progression by careful selection of frontline treatment in CP and early treatment intensification in non-optimal responders remains the main goal. Personalized evaluation of response kinetics could help in identifying patients at risk for progression
Oncogenic Mutations of MYD88 and CD79B in Diffuse Large B-Cell Lymphoma and Implications for Clinical Practice
Simple SummaryA diagnosis of diffuse large B-cell lymphoma in our therapeutic era should be implemented by the definition of the cell of origin, additional immunohistochemistry (i.e., BCL2 and MYC), and by fluorescent in-situ hybridization. The next step, suggested by the seminary works we will discuss in this review, will be to implement the definition of sub-categories by the recognition of single gene mutations and pathways that may be targetable by newer drugs. We here describe the impact that MYD88 and CD79B activating mutations, two of the most frequent mutations in several DLBCL subtypes, may achieve in the next future in the diagnosis and therapeutics of such a relevant lymphoma subtype.Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin's lymphoma in adults. Despite the recognition of transcriptional subtypes with distinct functional characteristics, patient outcomes have not been substantially altered since the advent of chemoimmunotherapy (CIT) twenty years ago. Recently, a few pivotal studies added to the disease heterogeneity by describing several activating mutations, which have been associated with disease presentation, B-cell function and behavior, and final outcome. DLBCL arises from antigen exposed B-cells, with the B-cell receptor (BCR) playing a central role. BCR-activity related mutations, such as CD79B and MYD88, are responsible for chronic activation of the BCR in a substantial subset of patients. These mutations, often coexisting in the same patient, have been found in a substantial subset of patients with immune-privileged (IP) sites DLBCLs, and are drivers of lymphoma development conferring tissue-specific homing properties. Both mutations have been associated with disease behavior, including tumor response either to CIT or to BCR-targeted therapy. The recognition of CD79B and MYD88 mutations will contribute to the heterogeneity of the disease, both in recognizing the BCR as a potential therapeutic target and in providing genetic tools for personalized treatment
Emerging data supporting stromal cell therapeutic potential in cancer: reprogramming stromal cells of the tumor microenvironment for anti-cancer effects
After more than a decade of controversy on the role of stromal cells in the tumor microenvironment, the emerging data shed light on pro-tumorigenic and potential anti-cancer factors, as well as on the roots of the discrepancies. We discuss the pro-tumorigenic effects of stromal cells, considering the effects of tumor drivers like hypoxia and tumor stiffness on these cells, as well as stromal cell-mediated adiposity and immunosuppression in the tumor microenvironment, and cancer initiating cells' cellular senescence and adaptive metabolism. We summarize the emerging data supporting stromal cell therapeutic potential in cancer, discuss the possibility to reprogram stromal cells of the tumor microenvironment for anti-cancer effects, and explore some causes of discrepancies on the roles of stromal cells in cancer in the available literature
Tumor Microenvironment Uses a Reversible Reprogramming of Mesenchymal Stromal Cells to Mediate Pro-tumorigenic Effects
The role of mesenchymal stromal cells (MSCs) in the tumor microenvironment is well described. Available data support that MSCs display anticancer activities, and that their reprogramming by cancer cells in the tumor microenvironment induces their switch toward pro-tumorigenic activities. Here we discuss the recent evidence of pro-tumorigenic effects of stromal cells, in particular (i) MSC support to cancer cells through the metabolic reprogramming necessary to maintain their malignant behavior and stemness, and (ii) MSC role in cancer cell immunosenescence and in the establishment and maintenance of immunosuppression in the tumor microenvironment. We also discuss the mechanisms of tumor microenvironment mediated reprogramming of MSCs, including the effects of hypoxia, tumor stiffness, cancer-promoting cells, and tumor extracellular matrix. Finally, we summarize the emerging strategies for reprogramming tumor MSCs to reactivate anticancer functions of these stromal cells
Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12
<p>Abstract</p> <p>Background</p> <p>Increased numbers of tumour-associated macrophages correlate with shortened survival in some cancers. The molecular bases of this correlation are not thoroughly understood. Events triggered by CXCL12 may play a part, as CXCL12 drives the migration of both CXCR4-positive cancer cells and macrophages and may promote a molecular crosstalk between them.</p> <p>Results</p> <p>Samples of HER1-positive colon cancer metastases in liver, a tissue with high expression of CXCL12, were analysed by immunohistochemistry. In all of the patient biopsies, CD68-positive tumour-associated macrophages presented a mixed CXCL10 (M1)/CD163 (M2) pattern, expressed CXCR4, GM-CSF and HB-EGF, and some stained positive for CXCL12. Cancer cells stained positive for CXCR4, CXCL12, HER1, HER4 and GM-CSF. Regulatory interactions among these proteins were validated <it>via </it>experiments <it>in vitro </it>involving crosstalk between human mononuclear phagocytes and the cell lines DLD-1 (human colon adenocarcinoma) and HeLa (human cervical carcinoma), which express the above-mentioned ligand/receptor repertoire. CXCL12 induced mononuclear phagocytes to release HB-EGF, which activated HER1 and triggered anti-apoptotic and proliferative signals in cancer cells. The cancer cells then proliferated and released GM-CSF, which in turn activated mononuclear phagocytes and induced them to release more HB-EGF. Blockade of GM-CSF with neutralising antibodies or siRNA suppressed this loop.</p> <p>Conclusions</p> <p>CXCL12-driven stimulation of cancer cells and macrophages may elicit and reinforce a GM-CSF/HB-EGF paracrine loop, whereby macrophages contribute to cancer survival and expansion. The involvement of mixed M1/M2 GM-CSF-stimulated macrophages in a tumour-promoting loop may challenge the paradigm of tumour-favouring macrophages as polarized M2 mononuclear phagocytes.</p
A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type Îł in chronic myeloid leukemia patients
Background:
Protein tyrosine phosphatase receptor gamma (PTPRG) is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML) have been reported, only one polyclonal antibody (named chPTPRG) has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPÎł B9-2) to better define PTPRG protein downregulation in CML patients.
Methods:
TPÎł B9-2 specifically recognizes PTPRG (both human and murine) by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry.
Results:
Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34+/CD38bright/dim cells). After effective tyrosine kinase inhibitor (TKI) treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI) non-responder patients, confirming that downregulation selectively occurs in primary CML cells.
Conclusions:
The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the availability of a specific reagent capable to specifically detect its target in various experimental conditions
An updated portrait of monocyte-macrophages in classical Hodgkin lymphoma
Classical Hodgkin lymphoma (cHL) is a unique neoplastic ecosystem characterized by a heterogeneous immune infiltrate surrounding the rare malignant Hodgkin Reed-Sternberg cells. Though less abundant than T-cells, tumor-infiltrating macrophages play a pivotal role in supporting HRS survival through cell-to-cell and paracrine interactions. Traditional immunohistochemistry based upon the M1-M2 dichotomy yielded controversial results about the composition, functional role and prognostic impact of macrophages in cHL. More recent studies exploiting single-cell technologies and image analyses have highlighted the heterogeneity and the peculiar spatial arrangement of the macrophagic infiltrate, with the most immunosuppressive subpopulations lying in close proximity of HRS cells and the most tumor-hostile subsets kept far away from the neoplastic niches. High-throughput analysis of peripheral blood mononuclear cells in cHL patients have also identified a novel, potentially cytotoxic, subpopulation predicting better response to PD-1 blockade. This review examines the phenotypic profile, spatial localization and clinical impact of tumor-infiltrating macrophages and circulating monocytes in cHL, providing an up-do-date portrait of these innate immune cells with possible translational applications
- …