15,007 research outputs found
Quantum Tomography
This is the draft version of a review paper which is going to appear in
"Advances in Imaging and Electron Physics"Comment: To appear in "Advances in Imaging and Electron Physics". Some figs
with low resolutio
Nonlinearity and nonclassicality in a nanomechanical resonator
We address quantitatively the relationship between the nonlinearity of a
mechanical resonator and the nonclassicality of its ground state. In
particular, we analyze the nonclassical properties of the nonlinear Duffing
oscillator (being driven or not) as a paradigmatic example of a nonlinear
nanomechanical resonator. We first discuss how to quantify the nonlinearity of
this system and then show that the nonclassicality of the ground state, as
measured by the volume occupied by the negative part of the Wigner function,
monotonically increases with the nonlinearity in all the working regimes
addressed in our study. Our results show quantitatively that nonlinearity is a
resource to create nonclassical states in mechanical systems.Comment: 6 pages; 7 figures; RevTeX4-
Maars to calderas. End-members on a spectrum of explosive volcanic depressions
We discuss maar-diatremes and calderas as end-members on a spectrum of negative volcanic landforms (depressions) produced by explosive eruptions (note—we focus on calderas formed during explosive eruptions, recognizing that some caldera types are not related to such activity). The former are dominated by ejection of material during numerous discrete phreatomagmatic explosions, brecciation, and subsidence of diatreme fill, while the latter are dominated by subsidence over a partly evacuated magma chamber during sustained, magmatic volatile-driven discharge. Many examples share characteristics of both, including landforms that are identified as maars but preserve deposits from non-phreatomagmatic explosive activity, and ambiguous structures that appear to be coalesced maars but that also produced sustained explosive eruptions with likely magma reservoir subsidence. A convergence of research directions on issues related to magma-water interaction and shallow reservoir mechanics is an important avenue toward developing a unified picture of the maar-diatreme-caldera spectrum
Nonthermal hard X-ray excess in the Coma cluster: resolving the discrepancy between the results of different PDS data analyses
The detection of a nonthermal excess in the Coma cluster spectrum by two
BeppoSAX observations analyzed with the XAS package (Fusco-Femiano et al.) has
been disavowed by an analysis (Rossetti & Molendi) performed with a different
software package (SAXDAS) for the extraction of the spectrum. To resolve this
discrepancy we reanalyze the PDS data considering the same software used by
Rossetti & Molendi. A correct selection of the data and the exclusion of
contaminating sources in the background determination show that also the SAXDAS
analysis reports a nonthermal excess with respect to the thermal emission at
about the same confidence level of that obtained with the XAS package
(~4.8sigma). Besides, we report the lack of the systematic errors investigated
by Rossetti & Molendi and Nevalainen et al. taking into account the whole
sample of the PDS observations off the Galactic plane, as already shown in our
data analysis of Abell 2256 (Fusco-Femiano, Landi & Orlandini). All this
eliminates any ambiguity and confirms the presence of a hard tail in the
spectrum of the Coma cluster.Comment: 12 pages, 2 figures. Accepted for publication in ApJ Letter
EXPERIMENTS DURING FLOW BOILING OF A R22 DROP-IN: R422D ADIABATIC PRESSURE GRADIENTS
R22, the HCFC most widely used in refrigeration and air-conditioning systems in the last years, is phasing-out. R422D, a zero ozone-depleting mixture of R125, R134a and R600a (65.1%/31.5%/3.4% by weight, respectively), has been recently proposed as a drop-in substitute. For energy consumption calculations and temperature control, it is of primary importance to estimate operating conditions after substitution. To determine pressure drop in the evaporator and piping line to the compressor, in this paper the experimental adiabatic pressure gradients during flow boiling of R422D are reported for a circular smooth horizontal tube (3.00 mm inner radius) in a range of operating conditions of interest for dry-expansion evaporators.
The data are used to establish the best predictive method for calculations and its accuracy: the Moreno-Quibèn and Thome method provided the best predictions for the whole database and also for the segregated data in the annular flow regime.
Finally, the experimental data have been compared with the adiabatic pressure gradients of both R22 and its much used alternative R407C available in the literature
Carbon Dioxide Heat Transfer Coefficients And Pressure Drops During Flow Boiling: Assessment Of Predictive Methods
Among the alternatives to the HCFCs and HFCs, carbon dioxide emerged as one of the most promising environmentally friendly refrigerants. In past years many works were carried out about CO2 flow boiling and very different two-phase flow characteristics from conventional fluids were found.
In order to assess the best predictive methods for the evaluation of CO2 heat transfer coefficients and pressure gradients in macro-channels, in the current article a literature survey of works and a collection of the results of statistical comparisons available in literature are furnished.
In addition the experimental data from University of Naples are used to run a deeper analysis. Both a statistical and a direct comparison against some of the most quoted predictive methods are carried out. Methods implemented both for low–medium pressure refrigerants and specifically developed for R744 are used in the comparison.
Some general indications about the choice of the predictive methods dependently on the operating conditions are given
- …