127 research outputs found
Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)
In applications of Gaussian processes where quantification of uncertainty is
of primary interest, it is necessary to accurately characterize the posterior
distribution over covariance parameters. This paper proposes an adaptation of
the Stochastic Gradient Langevin Dynamics algorithm to draw samples from the
posterior distribution over covariance parameters with negligible bias and
without the need to compute the marginal likelihood. In Gaussian process
regression, this has the enormous advantage that stochastic gradients can be
computed by solving linear systems only. A novel unbiased linear systems solver
based on parallelizable covariance matrix-vector products is developed to
accelerate the unbiased estimation of gradients. The results demonstrate the
possibility to enable scalable and exact (in a Monte Carlo sense)
quantification of uncertainty in Gaussian processes without imposing any
special structure on the covariance or reducing the number of input vectors.Comment: 10 pages - paper accepted at ICML 201
Pseudo-Marginal Bayesian Inference for Gaussian Processes
The main challenges that arise when adopting Gaussian Process priors in
probabilistic modeling are how to carry out exact Bayesian inference and how to
account for uncertainty on model parameters when making model-based predictions
on out-of-sample data. Using probit regression as an illustrative working
example, this paper presents a general and effective methodology based on the
pseudo-marginal approach to Markov chain Monte Carlo that efficiently addresses
both of these issues. The results presented in this paper show improvements
over existing sampling methods to simulate from the posterior distribution over
the parameters defining the covariance function of the Gaussian Process prior.
This is particularly important as it offers a powerful tool to carry out full
Bayesian inference of Gaussian Process based hierarchic statistical models in
general. The results also demonstrate that Monte Carlo based integration of all
model parameters is actually feasible in this class of models providing a
superior quantification of uncertainty in predictions. Extensive comparisons
with respect to state-of-the-art probabilistic classifiers confirm this
assertion.Comment: 14 pages double colum
Adaptive Multiple Importance Sampling for Gaussian Processes
In applications of Gaussian processes where quantification of uncertainty is
a strict requirement, it is necessary to accurately characterize the posterior
distribution over Gaussian process covariance parameters. Normally, this is
done by means of standard Markov chain Monte Carlo (MCMC) algorithms. Motivated
by the issues related to the complexity of calculating the marginal likelihood
that can make MCMC algorithms inefficient, this paper develops an alternative
inference framework based on Adaptive Multiple Importance Sampling (AMIS). This
paper studies the application of AMIS in the case of a Gaussian likelihood, and
proposes the Pseudo-Marginal AMIS for non-Gaussian likelihoods, where the
marginal likelihood is unbiasedly estimated. The results suggest that the
proposed framework outperforms MCMC-based inference of covariance parameters in
a wide range of scenarios and remains competitive for moderately large
dimensional parameter spaces.Comment: 27 page
Predicting continuous conflict perception with Bayesian Gaussian processes
Conflict is one of the most important phenomena of social life, but it is still largely neglected by the computing community. This work proposes an approach
that detects common conversational social signals (loudness, overlapping speech,
etc.) and predicts the conflict level perceived by human observers in continuous,
non-categorical terms. The proposed regression approach is fully Bayesian and it
adopts Automatic Relevance Determination to identify the social signals that influence most the outcome of the prediction. The experiments are performed over the SSPNet Conflict Corpus, a publicly available collection of 1430 clips extracted from televised political debates (roughly 12 hours of material for 138 subjects in total). The results show that it is possible to achieve a correlation close to 0.8 between actual and predicted conflict perception
Fast inference in nonlinear dynamical systems using gradient matching
Parameter inference in mechanistic models of
coupled differential equations is a topical problem.
We propose a new method based on kernel
ridge regression and gradient matching, and
an objective function that simultaneously encourages
goodness of fit and penalises inconsistencies
with the differential equations. Fast minimisation
is achieved by exploiting partial convexity
inherent in this function, and setting up an iterative
algorithm in the vein of the EM algorithm.
An evaluation of the proposed method on various
benchmark data suggests that it compares
favourably with state-of-the-art alternatives
Inference in Nonlinear Differential Equations
Parameter inference in mechanistic models of coupled differential equations is a challenging problem. We propose a new method using kernel ridge regression in Reproducing Kernel Hilbert Spaces (RKHS). A three-step gradient matching algorithm is developed and applied to a realistic biochemical model
- …