5 research outputs found

    Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia.

    Get PDF
    BACKGROUND: The prophylactic use of fluoroquinolones in patients with cancer and neutropenia is controversial and is not a recommended intervention. METHODS: We randomly assigned 760 consecutive adult patients with cancer in whom chemotherapy-induced neutropenia (<1000 neutrophils per cubic millimeter) was expected to occur for more than seven days to receive either oral levofloxacin (500 mg daily) or placebo from the start of chemotherapy until the resolution of neutropenia. Patients were stratified according to their underlying disease (acute leukemia vs. solid tumor or lymphoma). RESULTS: An intention-to-treat analysis showed that fever was present for the duration of neutropenia in 65 percent of patients who received levofloxacin prophylaxis, as compared with 85 percent of those receiving placebo (243 of 375 vs. 308 of 363; relative risk, 0.76; absolute difference in risk, -20 percent; 95 percent confidence interval, -26 to -14 percent; P=0.001). The levofloxacin group had a lower rate of microbiologically documented infections (absolute difference in risk, -17 percent; 95 percent confidence interval, -24 to -10 percent; P<0.001), bacteremias (difference in risk, -16 percent; 95 percent confidence interval, -22 to -9 percent; P<0.001), and single-agent gram-negative bacteremias (difference in risk, -7 percent; 95 percent confidence interval, -10 to -2 percent; P<0.01) than did the placebo group. Mortality and tolerability were similar in the two groups. The effects of prophylaxis were also similar between patients with acute leukemia and those with solid tumors or lymphoma. CONCLUSIONS: Prophylactic treatment with levofloxacin is an effective and well-tolerated way of preventing febrile episodes and other relevant infection-related outcomes in patients with cancer and profound and protracted neutropenia. The long-term effect of this intervention on microbial resistance in the community is not known

    Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome

    Get PDF
    Shiga toxin (Stx)-producing Escherichia coli is the predominant offending agent of post-diarrheal hemolytic uremic syndrome (HUS), a rare disorder of microvascular thrombosis and acute kidney injury possibly leading to long-term renal sequelae. We previously showed that C3a has a critical role in the development of glomerular damage in experimental HUS. Based on the evidence that activation of C3a/C3a receptor (C3aR) signaling induces mitochondrial dysregulation and cell injury, here we investigated whether C3a caused podocyte and tubular injury through induction of mitochondrial dysfunction in a mouse model of HUS. Mice coinjected with Stx2/LPS exhibited glomerular podocyte and tubular C3 deposits and C3aR overexpression associated with cell damage, which were limited by C3aR antagonist treatment. C3a promoted renal injury by affecting mitochondrial wellness as demonstrated by data showing that C3aR blockade reduced mitochondrial ultrastructural abnormalities and preserved mitochondrial mass and energy production. In cultured podocytes and tubular cells, C3a caused altered mitochondrial fragmentation and distribution, and reduced anti-oxidant SOD2 activity. Stx2 potentiated the responsiveness of renal cells to the detrimental effects of C3a through increased C3aR protein expression. These results indicate that C3aR may represent a novel target in Stx-associated HUS for the preservation of renal cell integrity through the maintenance of mitochondrial function
    corecore