2 research outputs found
Design, Construction and Characterization of a Portable Fast-Neutron Detector
At European Spallation Source ERIC, 2 GeV proton bunches will be accelerated towards a tungsten target where spallation will occur, producing a wide neutron energy spectrum. Despite the shielding and moderators in place to stop and/or reduce their energy, a significant portion of the most energetic neutrons, called prompt neutrons, might still reach the sample position of a neutron-scattering instrument. It has been previously shown that these prompt neutrons contribute to a degradation of the signal-to-noise ratio of the detectors. Clearly, a tool for identifying sources of fast-neutron background would be very valuable. The design goals of the envisioned Portable Fast-Neutron Diagnostic Detector include portability, durability, fast response and the ability for performing self-triggering time-of-flight measurements complete with tracking to localize fast-neutron sources. Within the context of this thesis, the detector system was conceptualized, designed and a prototype assembled. Testing was carried out with a plutonium/beryllium source and a industry-standard liquid scintillator detector to define a tagged fast-neutron beam (2.8-6.3 MeV). It was shown that the neutron response is energy dependent and improves at lower energies. Fast-neutron tracking capabilities of the detector were demonstrated.Spallations anlÀggningar Àr Àmnade för produktion och forskning med fria neutroner. Ett problem uppstÄr för dessa anlÀggningar efter att högenergetiska neutroner skapas via en sÄ kallad spallation. Högenergetiska neutroner Àr problematiska att hÄlla udner kontroll. PÄ grund av deras höga energi kan dessa neutronerna ``rymma'' och orsaka kÀrnreaktioner som bidrar till en försvagad signal-upplösningen hos forsknings-instrumenten pÄ dessa anlÀggningarna. Detta projekt behandlar utvecklingen av ett diagnos instrument som kan titta pÄ just dessa högenergetiska neutroner. Instrumentet kan sedan anvÀndas av spallations anlÀggningarna för att kartlÀgga sina snabba neutroner som rymt
Forward electron study with the HGTD
A study of the forward region of the ATLAS detector, using , data, was performed with the goal of decreasing the pile-up effect and improving the reconstruction resolution for electrons using a timing detector (HGTD) in front of the end-cap calorimeters under consideration for the ATLAS upgrade at the high luminosity LHC. The report focuses on the region with the \emph{timing} and \emph{pre-shower} configuration of the HGTD as well as different -cuts. Using the HGTD data the resolution was generally improved for all configuration by 12-15\% except with the \emph{timing} configuration at which remained unchanged within the statistical errors