3,590 research outputs found

    Beams of Gravitationally Bound Ultracold Neutrons in Rough Waveguides

    Get PDF
    We investigate the propagation of ultracold neutrons through a rough waveguide in conjunction with recent experiments in which the ultracold neutrons were beamed between a perfect mirror and a rough scatterer and absorber. The main goal is to find a way to resolve the lowest gravitationally quantized discrete states in the peV range. We compare the neutron count for various types of mirrors with Gaussian, power-law, and exponential correlation functions of surface inhomogeneities. The main conclusion is that all the information about inhomogeneities, including their amplitude, correlation radius, and the rate of decay of the correlation function, enter the exit neutron count via just a single constant Φ, which effectively renormalizes the amplitude of roughness. To observe well-defined quantum steps, one should have an experimental setup with Φ \u3e 40. For a wide variety of correlation functions, the constant Φ is proportional to the square of the amplitude of the surface roughness and is inversely proportional to the square root of the correlation radius. The strong dependence of Φ on roughness parameters and the shape of the correlation function opens a novel way for improving the resolution of gravitationally bound states by optimizing the roughness pattern without reverting to an undesirable strong roughness. We discuss how to optimize the scatterer and absorber by first generating numerically the desired roughness profile and then transferring it to the mirror. We also study the effect of beam preparation on the initial occupancies of gravitational states before the beam enters the waveguide. It turns out that there are simple ways to manipulate the beam in front of the waveguide that can help to resolve the gravitationally bound quantum states. Our results are in good agreement with available experimental data

    Rough Mirror as a Quantum State Selector: Analysis and Design

    Get PDF
    We report analysis of rough mirrors used as the gravitational state selectors in neutron beam and similar experiments. The key to mirror properties is its roughness correlation function (CF) which is extracted from the precision optical scanning measurements of the surface profile. To identify CF in the presence of fluctuation-driven fat tails, we perform numerical experiments with computer-generated random surfaces with the known CF. These numerical experiments provide a reliable identification procedure which we apply to the actual rough mirror. The extracted CF allows us to make predictions for ongoing GRANIT experiments. We also propose a radically new design for rough mirrors based on Monte Carlo simulations for the 1D Ising model. The implementation of this design provides a controlled environment with predictable scattering properties

    Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction

    Get PDF
    Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal-gain cascades (i.e., when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction.Comment: 18 pages, 7 figure

    Within- and between-group regression for improving the robustness of causal claims in cross-sectional analysis

    Get PDF
    Background: A major objective of environmental epidemiology is to elucidate exposure-health outcome associations. To increase the variance of observed exposure concentrations, researchers recruit individuals from different geographic areas. The common analytical approach uses multilevel analysis to estimate individual-level associations adjusted for individual and area covariates. However, in cross-sectional data this approach does not differentiate between residual confounding at the individual level and at the area level. An approach allowing researchers to distinguish between within-group effects and between-group effects would improve the robustness of causal claims. Methods: We applied an extended multilevel approach to a large cross-sectional study aimed to elucidate the hypothesized link between drinking water pollution from perfluoroctanoic acid (PFOA) and plasma levels of C-reactive protein (CRP) or lymphocyte counts. Using within- and between-group regression of the individual PFOA serum concentrations, we partitioned the total effect into a within- and between-group effect by including the aggregated group average of the individual exposure concentrations as an additional predictor variable. Results: For both biomarkers, we observed a strong overall association with PFOA blood levels. However, for lymphocyte counts the extended multilevel approach revealed the absence of a between-group effect, suggesting that most of the observed total effect was due to individual level confounding. In contrast, for CRP we found consistent between- and within-group effects, which corroborates the causal claim for the association between PFOA blood levels and CRP. Conclusion: Between- and within-group regression modelling augments cross-sectional analysis of epidemiological data by supporting the unmasking of non-causal associations arising from hidden confounding at different levels. In the application example presented in this paper, the approach suggested individual confounding as a probable explanation for the first observed association and strengthened the robustness of the causal claim for the second one

    Access to European dairy product markets: A Computable Partial Equilibrium analysis to assess Argentine exporters surplus

    Get PDF
    A partial equilibrium model is used to quantify price differentials not explained by tax policy and efficiency cost in the international trade of dairy products between Argentina and some countries of European Union (EU). Prices of imports of EU from Argentina and European producer of the domestic variety welfare fall when liberalization of non-tariff barriers are reduced or eliminated as well as European consumer’s welfare and Argentinean exporter’s earnings are increased. A sensibility analysis is carried out, changing substitution and supply elasticity and exporter’s earnings are shown for four alternative stages. The conclusions are that exporters obtain higher earnings by eliminating or reducing non-tariff barriers when substitution elasticity is higher, mainly for cheese. More inelastic supply products obtain higher earnings for Argentinean exporters (mainly in powdered milk). Finally, an alternative stage is explored where elimination of non-tariff barriers results in higher imports from the rest of the world. Results show a greater increase in Argentinean exporter’s earnings for cheese products and lower earnings for powdered milk.Computable partial equilibrium; dairy market; non-tariff barriers
    • …
    corecore