6,087 research outputs found
Magnetic response of carbon nanotubes from ab initio calculations
We present {\it ab initio} calculations of the magnetic susceptibility and of
the C chemical shift for carbon nanotubes, both isolated and in bundles.
These calculations are performed using the recently proposed gauge-including
projector augmented-wave approach for the calculation of magnetic response in
periodic insulating systems. We have focused on the semiconducting zigzag
nanotubes with diameters ranging from 0.6 to 1.6 nm. Both the susceptibility
and the isotropic shift exhibit a dependence with the diameter (D) and the
chirality of the tube (although this dependence is stronger for the
susceptibility). The isotropic shift behaves asymptotically as , where is a different constant for each family of nanotubes.
For a tube diameter of around 1.2 nm, a value normally found in experimental
samples, our results are in excellent agreement with experiments. Moreover, we
calculated the chemical shift of a double-wall tube. We found a diamagnetic
shift of the isotropic lines corresponding to the atoms of the inner tube due
to the effect of the outer tube. This shift is in good agreement with recent
experiments, and can be easily explained by demagnetizing currents circulating
the outer tube.Comment: 7 pages, 4 figure
Influence of the façades convective heat transfer coefficients on the thermal energy demand for an urban street canyon building
In an urban micro-climate environment, the convective heat transfer coefficient (CHTC) on the façades influences simulated building's energy demand and exterior wall surfaces temperatures. In this paper, it is analyzed how the CHTC values on the façades of a building located in an urban canyon influence the façades temperatures and how important is the choice of an accurate CHTC correlation on the space cooling and heating energy demand. CHTC correlations found in literature are based on some specific micro-climate parameters such as local wind speed, district construction density, temperature differences between façades and canyon air and wind direction. An accurate choice of the right correlation for the simulated urban environment is important to better represent the exterior walls heat removal due to outside wind climate. The effects of the use of different CHTC correlations have been evaluated by means of TRNSYS 17.0 simulation program. The study is performed for a building sited an urban street canyon with the aspect ratio H/W=1 and located in a Mediterranean climate, in Rome. The comparison performed between the results of the numerical simulations shows that some correlations lead to an underestimation of the space heating demand around 9.7% and to an overestimation of the space cooling demand around 17.5%
ANALISI TERMO-MECCANICHE DI DIAFRAMMI ENERGETICAMENTE ATTIVI
I diaframmi energeticamente attivi sono un particolare tipo di opera di sostegno all’interno dei quali è installato uno scambiatore di calore che sfrutta l’energia geotermica del terreno. Scopo di questo lavoro è stato individuare le condizioni termiche estive più gravose per un diaframma durante l’esercizio dell’impianto geotermico e, mediante analisi numeriche termo-meccaniche, studiare l’influenza dello scambio termico sul comportamento dell’opera di sostegno in termini di spostamenti, deformazioni e sforzi indotti nel diaframma
Star product and the general Leigh-Strassler deformation
We extend the definition of the star product introduced by Lunin and
Maldacena to study marginal deformations of N=4 SYM. The essential difference
from the latter is that instead of considering U(1)xU(1) non-R-symmetry, with
charges in a corresponding diagonal matrix, we consider two Z_3-symmetries
followed by an SU(3) transformation, with resulting off-diagonal elements. From
this procedure we obtain a more general Leigh-Strassler deformation, including
cubic terms with the same index, for specific values of the coupling constants.
We argue that the conformal property of N=4 SYM is preserved, in both beta-
(one-parameter) and gamma_{i}-deformed (three-parameters) theories, since the
deformation for each amplitude can be extracted in a prefactor. We also
conclude that the obtained amplitudes should follow the iterative structure of
MHV amplitudes found by Bern, Dixon and Smirnov.Comment: 21 pages, no figures, JHEP3, v2: references added, v3: appendix A
added, v4: clarification in section 3.
Effects of magnetism and doping on the electron-phonon coupling in BaFeAs
We calculate the effect of local magnetic moments on the electron-phonon
coupling in BaFeAs using the density functional perturbation
theory. We show that the magnetism enhances the total electron-phonon coupling
by , up to , still not enough to explain the
high critical temperature, but strong enough to have a non-negligible effect on
superconductivity, for instance, by frustrating the coupling with spin
fluctuations and inducing order parameter nodes. The enhancement comes mostly
from a renormalization of the electron-phonon matrix elements. We also
investigate, in the rigid band approximation, the effect of doping, and find
that versus doping does not mirror the behavior of the density of
states; while the latter decreases upon electron doping, the former does not,
and even increases slightly.Comment: 4 pages, 3 figure
Effects of Light and Water Availability on the Performance of Hemlock Woolly Adelgid (Hemiptera: Adelgidae)
Eastern hemlock (Tsuga canadensis (L.) Carriere) is a dominant shade-tolerant tree in northeastern United States that has been declining since the arrival of the hemlock woolly adelgid (Adelges tsugae Annand). Determining where A. tsugae settles under different abiotic conditions is important in understanding the insect’s expansion. Resource availability such as light and water can affect herbivore selectivity and damage. We examined how A. tsugae settlement and survival were affected by differences in light intensity and water availability, and how adelgid affected tree performance growing in these different abiotic treatments. In a greenhouse at the University of Rhode Island, we conducted an experiment in which the factors light (full-sun, shaded), water (water-stressed, watered), and adelgid (infested, insect-free) were fully crossed for a total of eight treatments (20 two-year-old hemlock saplings per treatment). We measured photosynthesis, transpiration, water potential, relative water content, adelgid density, and survival throughout the experiment. Adelgid settlement was higher on the old-growth foliage of shaded and water-stressed trees, but their survival was not altered by foliage age or either abiotic factor. The trees responded more to the light treatments than the water treatments. Light treatments caused a difference in relative water content, photosynthetic rate, transpiration, and water potential; however, water availability did not alter these variables. Adelgid did not enhance the impact of these abiotic treatments. Further studies are needed to get a better understanding of how these abiotic factors impact adelgid densities and tree health, and to determine why adelgid settlement was higher in the shaded treatments
Membrane Type 1 Matrix Metalloproteinase Regulates Monocyte Migration and Collagen Destruction in Tuberculosis
Tuberculosis (TB) remains a global pandemic and drug resistance is rising. Multicellular granuloma formation is the pathological hallmark of Mycobacterium tuberculosis infection. The membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) is a collagenase that is key in leukocyte migration and collagen destruction. In patients with TB, induced sputum MT1-MMP mRNA levels were increased 5.1-fold compared with matched controls and correlated positively with extent of lung infiltration on chest radiographs (r = 0.483; p < 0.05). M. tuberculosis infection of primary human monocytes increased MT1-MMP surface expression 31.7-fold and gene expression 24.5-fold. M. tuberculosis-infected monocytes degraded collagen matrix in an MT1-MMP-dependent manner, and MT1-MMP neutralization decreased collagen degradation by 73%. In human TB granulomas, MT1-MMP immunoreactivity was observed in macrophages throughout the granuloma. Monocyte-monocyte networks caused a 17.5-fold increase in MT1-MMP surface expression dependent on p38 MAPK and G protein-coupled receptor-dependent signaling. Monocytes migrating toward agarose beads impregnated with conditioned media from M. tuberculosis-infected monocytes expressed MT1-MMP. Neutralization of MT1-MMP activity decreased this M. tuberculosis network-dependent monocyte migration by 44%. Taken together, we demonstrate that MT1-MMP is central to two key elements of TB pathogenesis, causing collagen degradation and regulating monocyte migration
Electron-phonon coupling and phonon self-energy in MgB: do we really understand MgB Raman spectra ?
We consider a model Hamiltonian fitted on the ab-initio band structure to
describe the electron-phonon coupling between the electronic bands and
the phonon E mode in MgB. The model allows for analytical
calculations and numerical treatments using very large k-point grids. We
calculate the phonon self-energy of the E mode along two high symmetry
directions in the Brillouin zone. We demonstrate that the contribution of the
bands to the Raman linewidth of the E mode via the
electron-phonon coupling is zero. As a consequence the large resonance seen in
Raman experiments cannot be interpreted as originated from the mode at
. We examine in details the effects of Fermi surface singularities in
the phonon spectrum and linewidth and we determine the magnitude of finite
temperature effects in the the phonon self-energy. From our findings we suggest
several possible effects which might be responsible for the MgB Raman
spectra.Comment: 10 pages, 9 figure
All-electron magnetic response with pseudopotentials: NMR chemical shifts
A theory for the ab initio calculation of all-electron NMR chemical shifts in
insulators using pseudopotentials is presented. It is formulated for both
finite and infinitely periodic systems and is based on an extension to the
Projector Augmented Wave approach of Bloechl [P. E. Bloechl, Phys. Rev. B 50,
17953 (1994)] and the method of Mauri et al [F. Mauri, B.G. Pfrommer, and S.G.
Louie, Phys. Rev. Lett. 77, 5300 (1996)]. The theory is successfully validated
for molecules by comparison with a selection of quantum chemical results, and
in periodic systems by comparison with plane-wave all-electron results for
diamond.Comment: 25 pages, 4 tables, submitted to Physical Review
Total energy global optimizations using non orthogonal localized orbitals
An energy functional for orbital based calculations is proposed, which
depends on a number of non orthogonal, localized orbitals larger than the
number of occupied states in the system, and on a parameter, the electronic
chemical potential, determining the number of electrons. We show that the
minimization of the functional with respect to overlapping localized orbitals
can be performed so as to attain directly the ground state energy, without
being trapped at local minima. The present approach overcomes the multiple
minima problem present within the original formulation of orbital based
methods; it therefore makes it possible to perform calculations for an
arbitrary system, without including any information about the system bonding
properties in the construction of the input wavefunctions. Furthermore, while
retaining the same computational cost as the original approach, our formulation
allows one to improve the variational estimate of the ground state energy, and
the energy conservation during a molecular dynamics run. Several numerical
examples for surfaces, bulk systems and clusters are presented and discussed.Comment: 24 pages, RevTex file, 5 figures available upon reques
- …