3 research outputs found
Effects of additional anterior body mass on gait
BACKGROUND: Gradual increases in mass such as during pregnancy are associated with changes in gait at natural velocities. The purpose of this study was to examine how added mass at natural and imposed slow walking velocities would affect gait parameters. METHODS: Eighteen adult females walked at two velocities (natural and 25 % slower than their natural pace) under four mass conditions (initial harness only (1 kg), 4.535 kg added anteriorly, 9.07 kg added anteriorly, and final harness only (1 kg)). We collected gait kinematics (100 Hz) using a motion capture system. RESULTS: Added anterior mass decreased cycle time and stride length. Stride width decreased once the mass was removed (p < .01). Added mass resulted in smaller peak hip extension angles (p < .01). The imposed slow walking velocity increased cycle time, double limb support time and decreased stride length, peak hip extension angles, and peak plantarflexion angles (p < .01). With added anterior mass and an imposed slow walking velocity, participants decreased cycle time when mass was added and increased cycle time once the mass was removed (p < .01). CONCLUSIONS: Gait adaptations may be commensurate with the magnitude of additional mass when walking at imposed slow versus natural velocities. This study presents a method for understanding how increased mass and imposed speed might affect gait independent of other effects related to pregnancy. Examining how added body mass and speed influence gait is one step in better understanding how women adapt to walking under different conditions.K12 HD055931 - NICHD NIH HHS; K23 AR063235 - NIAMS NIH HH