47 research outputs found

    Ranolazine Attenuates Trastuzumab-Induced Heart Dysfunction by Modulating ROS Production

    Get PDF
    The ErbB2 blocker trastuzumab improves survival in oncologic patients, but can cause cardiotoxicity. The late Na+ current inhibitor ranolazine has been shown to counter experimental HF, including doxorubicin cardiotoxicity (a condition characterized by derangements in redox balance), by lowering the levels of reactive oxygen species (ROS). Since ErbB2 can modulate ROS signaling, we tested whether trastuzumab cardiotoxicity could be blunted by ranolazine via redox-mediated mechanisms. Trastuzumab decreased fractional shortening and ejection fraction in mice, but ranolazine prevented heart dysfunction when co-administered with trastuzumab. Trastuzumab cardiotoxicity was accompanied by elevations in natriuretic peptides and matrix metalloproteinase 2 (MMP2) mRNAs, which were not elevated with co-treatment with ranolazine. Trastuzumab also increased cleavage of caspase-3, indicating activation of the proapoptotic machinery. Again, ranolazine prevented this activation. Interestingly, Neonatal Rat Ventricular Myocytes (NRVMs), labeled with MitoTracker Red and treated with trastuzumab, showed only a small increase in ROS compared to baseline conditions. We then stressed trastuzumab-treated cells with the beta-agonist isoproterenol to increase workload, and we observed a significant increase of probe fluorescence, compared with cells treated with isoproterenol alone, reflecting induction of oxidative stress. These effects were blunted by ranolazine, supporting a role for INa inhibition in the regulation of redox balance also in trastuzumab cardiotoxicity

    Antineoplastic-related cardiotoxicity, morphofunctional aspects in a murine model: contribution of the new tool 2D-speckle tracking

    Get PDF
    Objective: Considering that global left ventricular systolic radial strain is a sensitive technique for the early detection of left ventricular dysfunction due to antineoplastics and the analysis of segmental myocardial contractility, we evaluated this technique for early detection of trastuzumab-related cardiotoxicity by comparing it with cardiac structural damage. Methods: Groups of six mice were injected with trastuzumab or doxorubicin, used either as single agents or in combination. Cardiac function was evaluated by transthoracic echocardiography measurements before and after treatment for 2 or 7 days, by using a Vevo 2100 high-resolution imaging system. After echocardiography, mice were euthanized, and hearts were processed for histological evaluations, such as cardiac fibrosis, apoptosis, capillary density, and inflammatory response. Results: Trastuzumab-related cardiotoxicity was detected early by 2D strain imaging. Radial strain was reduced after 2 days in mice treated with trastuzumab alone (21.2%±8.0% vs 40.5%±4.8% sham; P<0.01). Similarly, trastuzumab was found to induce apoptosis, capillary density reduction, and inflammatory response in cardiac tissue after 2 days of treatment, in a fashion similar to doxorubicin. On the contrary, fractional shortening reduction and cardiac fibrosis were observed only after 7 days of trastuzumab treatment, in contrast to doxorubicin treatment which induced early fibrosis and fractional shortening reduction. Conclusion: The reduction of left ventricular systolic strain after 2 days of trastuzumab treatment may indicate early myocardial functional damage before the reduction in left ventricular ejection fraction and this early dysfunction is well correlated with structural myocardial damage, such as apoptosis and inflammatory response. Fractional shortening reduction after 7 days of trastuzumab treatment is related to fibrosis in cardiac tissue

    Ranolazine attenuates trastuzumab-induced heart dysfunction by modulating ROS production

    Get PDF
    The ErbB2 blocker trastuzumab improves survival in oncologic patients, but can cause cardiotoxicity. The late Na+ current inhibitor ranolazine has been shown to counter experimental HF, including doxorubicin cardiotoxicity (a condition characterized by derangements in redox balance), by lowering the levels of reactive oxygen species (ROS). Since ErbB2 can modulate ROS signaling, we tested whether trastuzumab cardiotoxicity could be blunted by ranolazine via redox-mediated mechanisms. Trastuzumab decreased fractional shortening and ejection fraction in mice, but ranolazine prevented heart dysfunction when co-administered with trastuzumab. Trastuzumab cardiotoxicity was accompanied by elevations in natriuretic peptides and matrix metalloproteinase 2 (MMP2) mRNAs, which were not elevated with co-treatment with ranolazine. Trastuzumab also increased cleavage of caspase-3, indicating activation of the proapoptotic machinery. Again, ranolazine prevented this activation. Interestingly, Neonatal Rat Ventricular Myocytes (NRVMs), labeled with MitoTracker Red and treated with trastuzumab, showed only a small increase in ROS compared to baseline conditions. We then stressed trastuzumab-treated cells with the beta-agonist isoproterenol to increase workload, and we observed a significant increase of probe fluorescence, compared with cells treated with isoproterenol alone, reflecting induction of oxidative stress. These effects were blunted by ranolazine, supporting a role for INa inhibition in the regulation of redox balance also in trastuzumab cardiotoxicity

    Rapid relief of spontaneous angina by intraventricular diltiazem: systemic andregional coronary haemodynamic determinants

    No full text
    The authors describe a case of spontaneous angina during catheterization in a patient with left anterior descending and circumflex stenosis promptly relieved by diltiazem, 10 mg, given in the left ventricle. Coronary and systemic haemodynamics measured during and at the end of angina demonstrated an increase in blood flow to the ischaemic myocardium as the mechanism responsible for the diltiazem-induced angina relief

    Early Identification of Left Ventricular Dysfunction Induced by Trastuzumab

    Get PDF
    corecore