18 research outputs found

    Behavioral Detection of Electrical Microstimulation in Different Cortical Visual Areas

    Get PDF
    SummaryThe extent to which areas in the visual cerebral cortex differ in their ability to support perceptions has been the subject of considerable speculation. Experiments examining the activity of individual neurons have suggested that activity in later stages of the visual cortex is more closely linked to perception than that in earlier stages [1–9]. In contrast, results from functional imaging, transcranial magnetic stimulation, and lesion studies have been interpreted as showing that earlier stages are more closely coupled to perception [10–15]. We examined whether neuronal activity in early and later stages differs in its ability to support detectable signals by measuring behavioral thresholds for detecting electrical microstimulation in different cortical areas in two monkeys. By training the animals to perform a two-alternative temporal forced-choice task, we obtained criterion-free thresholds from five visual areas—V1, V2, V3A, MT, and the inferotemporal cortex. Every site tested yielded a reliable threshold. Thresholds varied little within and between visual areas, rising gradually from early to later stages. We similarly found no systematic differences in the slopes of the psychometric detection functions from different areas. These results suggest that neuronal signals of similar magnitude evoked in any part of visual cortex can generate percepts

    No binocular rivalry in the LGN of alert macaque monkeys

    Get PDF
    AbstractOrthogonal drifting gratings were presented binocularly to alert macaque monkeys in an attempt to find neural correlates of binocular rivalry. Gratings were centered over lateral geniculate nucleus (LGN) receptive fields and the corresponding points for the opposite eye. The only task of the monkey was to fixate. We found no difference between the responses of LGN neurons under rivalrous and nonrivalrous conditions, as determined by examining the ratios of their respective power spectra. There was, however, a curious “temporal afterimage” effect in which cell responses continued to be modulated at the drift frequency of the grating for several seconds after the grating disappeared

    Feature-based attention in visual cortex

    Get PDF
    Although most studies of visual attention have examined the effects of shifting attention between different locations in the visual field, attention can also be directed to particular visual features, such as a color, orientation or a direction of motion. Single-unit studies have shown that attention to a feature modulates neuronal signals in a range of areas in monkey visual cortex. The location-independent property of feature-based attention makes it particularly well suited to modify selectively the neural representations of stimuli or parts within complex visual scenes that match the currently attended feature. This review is part of the TINS special issue on The Neural Substrates of Cognition

    Using Neuronal Populations to Study the Mechanisms Underlying Spatial and Feature Attention

    Get PDF
    SummaryVisual attention affects both perception and neuronal responses. Whether the same neuronal mechanisms mediate spatial attention, which improves perception of attended locations, and nonspatial forms of attention has been a subject of considerable debate. Spatial and feature attention have similar effects on individual neurons. Because visual cortex is retinotopically organized, however, spatial attention can comodulate local neuronal populations, whereas feature attention generally requires more selective modulation. We compared the effects of feature and spatial attention on local and spatially separated populations by recording simultaneously from dozens of neurons in both hemispheres of V4. Feature and spatial attention affect the activity of local populations similarly, modulating both firing rates and correlations between pairs of nearby neurons. However, whereas spatial attention appears to act on local populations, feature attention is coordinated across hemispheres. Our results are consistent with a unified attentional mechanism that can modulate the responses of arbitrary subgroups of neurons

    Tuned Normalization Explains the Size of Attention Modulations

    Get PDF
    SummaryThe effect of attention on firing rates varies considerably within a single cortical area. The firing rate of some neurons is greatly modulated by attention while others are hardly affected. The reason for this variability across neurons is unknown. We found that the variability in attention modulation across neurons in area MT of macaques can be well explained by variability in the strength of tuned normalization across neurons. The presence of tuned normalization also explains a striking asymmetry in attention effects within neurons: when two stimuli are in a neuron's receptive field, directing attention to the preferred stimulus modulates firing rates more than directing attention to the nonpreferred stimulus. These findings show that much of the neuron-to-neuron variability in modulation of responses by attention depends on variability in the way the neurons process multiple stimuli, rather than differences in the influence of top-down signals related to attention

    Effects of motor unit size on innervation patterns in neonatal mammals

    No full text
    Different muscles in neonatal rabbits differ with respect to the extent of multiple innervation and the rate of synapse elimination. Counts were made of both α-motor neurons (using retrograde transport of horseradish peroxidase) and muscle fibers for each of three rabbit muscles, to see whether the differences between muscles in the degree of multiple innervation and/or the rate of synapse elimination were related to the motor neuron:muscle fiber ratio (the innervation ratio). The results suggest that individual motor neurons from muscles with a 10-fold range of muscle fiber number tend initially to establish a similar number of synapses, which results in different degrees of multiple innervation among muscles. The rate of synapse elimination in a muscle, however, does not appear to depend on the innervation ratio
    corecore