29 research outputs found

    Intrinsic nucleic acid dynamics modulates HIV-1 nucleocapsid protein binding to its targets

    Get PDF
    HIV-1 nucleocapsid protein (NC) is involved in the rearrangement of nucleic acids occurring in key steps of reverse transcription. The protein, through its two zinc fingers, interacts preferentially with unpaired guanines in single-stranded sequences. In mini-cTAR stem-loop, which corresponds to the top half of the cDNA copy of the transactivation response element of the HIV-1 genome, NC was found to exhibit a clear preference for the TGG sequence at the bottom of mini-cTAR stem. To further understand how this site was selected among several potential binding sites containing unpaired guanines, we probed the intrinsic dynamics of mini-cTAR using (13)C relaxation measurements. Results of spin relaxation time measurements have been analyzed using the model-free formalism and completed by dispersion relaxation measurements. Our data indicate that the preferentially recognized guanine in the lower part of the stem is exempt of conformational exchange and highly mobile. In contrast, the unrecognized unpaired guanines of mini-cTAR are involved in conformational exchange, probably related to transient base-pairs. These findings support the notion that NC preferentially recognizes unpaired guanines exhibiting a high degree of mobility. The ability of NC to discriminate between close sequences through their dynamic properties contributes to understanding how NC recognizes specific sites within the HIV genome

    Nucleic Acids Res

    Get PDF
    The HIV-1 transactivator of transcription (Tat) protein is thought to stimulate reverse transcription (RTion). The Tat protein and, more specifically, its (44-61) domain were recently shown to promote the annealing of complementary DNA sequences representing the HIV-1 transactivation response element TAR, named dTAR and cTAR, that plays a key role in RTion. Moreover, the kinetic mechanism of the basic Tat(44-61) peptide in this annealing further revealed that this peptide constitutes a representative nucleic acid annealer. To further understand the structure-activity relationships of this highly conserved domain, we investigated by electrophoresis and fluorescence approaches the binding and annealing properties of various Tat(44-61) mutants. Our data showed that the Tyr47 and basic residues of the Tat(44-61) domain were instrumental for binding to cTAR through stacking and electrostatic interactions, respectively, and promoting its annealing with dTAR. Furthermore, the annealing efficiency of the mutants clearly correlates with their ability to rapidly associate and dissociate the complementary oligonucleotides and to promote RTion. Thus, transient and dynamic nucleic acid interactions likely constitute a key mechanistic component of annealers and the role of Tat in the late steps of RTion. Finally, our data suggest that Lys50 and Lys51 acetylation regulates Tat activity in RTion

    The HIV-1 Integrase α4-Helix Involved in LTR-DNA Recognition Is also a Highly Antigenic Peptide Element

    Get PDF
    Monoclonal antibodies (MAbas) constitute remarkable tools to analyze the relationship between the structure and the function of a protein. By immunizing a mouse with a 29mer peptide (K159) formed by residues 147 to 175 of the HIV-1 integrase (IN), we obtained a monoclonal antibody (MAba4) recognizing an epitope lying in the N-terminal portion of K159 (residues 147–166 of IN). The boundaries of the epitope were determined in ELISA assays using peptide truncation and amino acid substitutions. The epitope in K159 or as a free peptide (pep-a4) was mostly a random coil in solution, while in the CCD (catalytic core domain) crystal, the homologous segment displayed an amphipathic helix structure (α4-helix) at the protein surface. Despite this conformational difference, a strong antigenic crossreactivity was observed between pep-a4 and the protein segment, as well as K156, a stabilized analogue of pep-a4 constrained into helix by seven helicogenic mutations, most of them involving hydrophobic residues. We concluded that the epitope is freely accessible to the antibody inside the protein and that its recognition by the antibody is not influenced by the conformation of its backbone and the chemistry of amino acids submitted to helicogenic mutations. In contrast, the AA →Glu mutations of the hydrophilic residues Gln148, Lys156 and Lys159, known for their interactions with LTRs (long terminal repeats) and inhibitors (

    Solution Structure of the CpG Containing d(CTTCGAAG) 2

    No full text

    An NMR study of d(CTACTGCTTTAG).d(CTAAAGCAGTAG) showing hydration water molecules in the minor groove of a TpA step.

    No full text
    International audienceThe hydration properties of the non-palindromic duplex d(CTACTGCTTTAG). d(CTAAAGCAGTAG) were investigated by NMR spectroscopy. The oligonucleotide possesses a heterogeneous B-DNA structure. The H2(n)-H1'(m+1) distances reflect a minor groove narrowing within the TTT/AAA segment (approximately 3.9A) and a sudden widening at the T10:A15 base-pair (approximately 5.3A), the standard B-DNA distance being approximately 5A. The facing T10pA11 and T14pA15 steps at the end of the TTTA/AAAT segment have completely different behaviors. Only A15 ending the AAA run displays NMR features comparable to those shown by adenines of TpA steps occupying the central position of TnAn (n> or =2) segments. These involve particular chemical shifts and line broadening of the H2 and H8 protons. Positive NOESY cross-peaks were measured between the water protons and the H2 protons of A15, A16 and A17 reflecting the occurrence of hydration water molecules with residence times longer than 500 picoseconds along the minor groove of the TTT/AAA segment. In contrast no water molecules with long residence times were observed neither for A3, A20 and A23 nor for A11 ending the 5'TTTA run. We confirm thus that the binding of water molecules with long residence time to adenine residues correlates with the minor groove narrowing. In contrast, the widening of the minor groove at the A11:T14 base-pair ending the TTTA/TAAA segment, likely associated to a high negative propeller twist value at this base-pair, prevents the binding of a water molecule with long residence time to A11 but not to A15 of the preceding T10:A15 base-pair. Thus, in our non-palindromic oligonucleotide the water molecules bind differently to A11 and A15 although both adenines are part of a TpA step. The slower motions occurring at A15 compared to A11 are also well explained by the present results

    Hairpins in a DNA site for topoisomerase II studied by 1H- and 31P-NMR.

    No full text
    1H- and 31P-NMR and UV-absorption studies were carried out with the oligonucleotide strands d(AGCT-TATC-ATC-GATAAGCT) (-ATC-) and d(AGCTTATC-GAT-GATAAGCT) (-GAT-) contained in the strongest and salt resistant cleavage site for topoisomerase II in pBR322 DNA. We found that the two oligonucleotides were stabilized under a hairpin structure characterized by a eight base pair stem and a three base loop at low DNA and salt concentrations. In such experimental conditions, only the -GAT- oligonucleotide displayed a partial homoduplex structure in slow equilibrium with its folded structure. Temperature dependencies of imino protons showed that the partial homoduplex of -GAT- melted at a lower temperature than the hairpin structure. It was suggested that the appearance of the partial homoduplex in -GAT- is related to the formation of two stabilizing (G.T) mismatched base pairs in the central loop of this structure. Finally, it was inferred from the dispersion of chemical shifts in the 31P-NMR spectra that the distortions affecting the backbone of the hairpin loop are larger in the case of -ATC- compared with -GAT-. At the same time NOEs proved that the base stacking was stronger within the loop of the -ATC- hairpin
    corecore