1,181 research outputs found
Modal Analysis of the Orion Capsule Two Parachute System
As discussed in Ref [1], it is apparent from flight tests that the system made up of two main parachutes and a capsule can undergo several distinct dynamical behaviors. The most significant and problematic of these is the pendulum mode in which the system develops a pronounced swinging motion with an amplitude of up to 24 deg. Large excursions away from vertical by the capsule could cause it to strike the ground at a large horizontal or vertical speed and jeopardize the safety of the astronauts during a crewed mission. In reference [1], Ali et al. summarized a series of efforts taken by the Capsule Parachute Assembly System (CPAS) Program to understand and mitigate the pendulum issue. The period of oscillation and location of the system's pivot point are determined from post-flight analysis. Other noticeable but benign modes include: 1) flyout (scissors) mode, where the parachutes move back and forth symmetrically with respect to the vertical axis similar to the motion of a pair of scissors; 2) maypole mode, where the two parachutes circle around the vertical axis at a nearly constant radius and period; and 3) breathing mode, in which deformation of the non-rigid canopies affects the axial acceleration of the system in an oscillatory manner. Because these modes are relatively harm- less, little effort has been devoted to analyzing them in comparison with the pendulum motion. Motions of the actual system made up of two parachutes and a capsule are extremely complicated due to nonlinearities and flexibility effects. Often it is difficult to obtain insight into the fundamental dynamics of the system by examining results from a multi-body simulation based on nonlinear equations of motion (EOMs). As a part of this study, the dynamics of each mode observed during flight is derived from first principles on an individual basis by making numerous simplifications along the way. The intent is to gain a better understanding into the behavior of the complex multi-body system by studying the reduced set of differential equations associated with each mode. This approach is analogous to the traditional modal analysis technique used to study airplane flight dynamics, in which the full nonlinear behavior of the airframe is decomposed into the phugoid and short period modes for the longitudinal dynamics and the spiral, roll-subsidence, and dutch-roll modes for the lateral dynamics. It is important to note that the study does not address the mechanisms that cause the system to transition from one mode to another, nor does it discuss motions during which two or more modes occur simultaneously
Capabilities of GRO/OSSE for observing solar flares
The launch of the Gamma Ray Observatory (GRO) near solar maximum makes solar flare studies early in the mission particularly advantageous. The Oriented Scintillation Spectrometer Experiment (OSSE) on GRO, covering the energy range 0.05 to 150 MeV, has some significant advantages over the previous generation of satellite-borne gamma-ray detectors for solar observations. The OSSE detectors will have about 10 times the effective area of the Gamma-Ray Spectrometer (GRS) on Solar Maximum Mission (SMM) for both photons and high-energy neutrons. The OSSE also has the added capability of distinguishing between high-energy neutrons and photons directly. The OSSE spectral accumulation time (approx. 4s) is four times faster than that of the SMM/GRS; much better time resolution is available in selected energy ranges. These characteristics will allow the investigation of particle acceleration in flares based on the evolution of the continuum and nuclear line components of flare spectra, nuclear emission in small flares, the anisotropy of continuum emission in small flares, and the relative intensities of different nuclear lines. The OSSE observational program will be devoted primarily to non-solar sources. Therefore, solar observations require planning and special configurations. The instrumental and operational characteristics of OSSE are discussed in the context of undertaking solar observations. The opportunities for guest investigators to participate in solar flare studies with OSSE is also presented
Compton Echoes from Gamma-ray Bursts
Recent observations of gamma-ray bursts (GRBs) have provided growing evidence
for collimated outflows and emission, and strengthened the connection between
GRBs and supernovae. If massive stars are the progenitors of GRBs, the hard
photon pulse will propagate in the pre-burst, dense environment. Circumstellar
material will Compton scatter the prompt GRB radiation and give rise to a
reflection echo. We calculate luminosities, spectra, and light curves of such
Compton echoes in a variety of emission geometries and ambient gas
distributions, and show that the delayed hard X-ray flash from a pulse
propagating into a red supergiant wind could be detectable by Swift out to
z~0.2. Independently of the gamma-ray spectrum of the prompt burst, reflection
echoes will typically show a high-energy cutoff between m_ec^2/2 and m_ec^2
because of Compton downscattering. At fixed burst energy per steradian, the
luminosity of the reflected echo is proportional to the beaming solid angle,
Omega_b, of the prompt pulse, while the number of bright echoes detectable in
the sky above a fixed limiting flux increases as Omega_b^{1/2}, i.e. it is
smaller in the case of more collimated jets. The lack of an X-ray echo at one
month delay from the explosion poses severe constraints on the possible
existence of a lateral GRB jet in SN 1987A. The late r-band afterglow observed
in GRB990123 is fainter than the optical echo expected in a dense red
supergiant environment from a isotropic prompt optical flash. Significant MeV
delayed emission may be produced through the bulk Compton (or Compton drag)
effect resulting from the interaction of the decelerating fireball with the
scattered X-ray radiation.Comment: LaTeX, 18 pages, 4 figures, revised version accepted for publication
in the Ap
Coping with multiple enemies : pairwise interactions do not predict evolutionary change in complex multitrophic communities
Predicting the ecological and evolutionary trajectories of populations in multispecies communities is one of the fundamental challenges in ecology. Many of these predictions are made by scaling patterns observed from pairwise interactions. Here, we show that the coupling of ecological and evolutionary outcomes is likely to be weaker in increasingly complex communities due to greater chance of life-history trait correlations. Using model microbial communities comprising a focal bacterial species (Bacillus subtilis), a bacterial competitor, protist predator and phage parasite, we found that increasing the number of enemies in a community had an overall negative effect on B. subtilis population growth. However, only the competitor imposed direct selection for B. subtilis trait evolution in pairwise cultures and this effect was weakened in the presence of other antagonists that had a negative effect on the competitor. In contrast, adaptation to parasites was driven indirectly by correlated selection where competitors had a positive and predators a negative effect. For all measured traits, selection in pairwise communities was a poor predictor of B. subtilis evolution in more complex communities. Together, our results suggest that coupling of ecological and evolutionary outcomes is interaction-specific and weakly coupled in more complex communities. We conclude that understanding 2 the ecological and evolutionary mechanisms underpinning trait correlations is crucial to predict species response to global change in complex microbial communitie
Phobos DTM and Coordinate Refinement for Phobos-Grunt Mission Support.
Images obtained by the High Resolution Stereo Camera (HRSC) during recent Phobos flybys were used to study the proposed new landing site area of the Russian Phobos-Grunt mission, scheduled for launch in 2011 [1]. From the stereo images (resolution of up to 4.4 m/pixel), a digital terrain model (DTM) with a lateral resolution of 100 m per pixel and a relative point accuracy of ±15 m, was determined. Images and DTM were registered to the established Phobos control point network [7]. A map of the landing site area was produced enabling mission planers and scientists to extract accurate body-fixed coordinates of features in the Phobos Grunt landing site area
OSSE spectral analysis techniques
Analysis of the spectra from the Oriented Scintillation Spectrometer Experiment (OSSE) is complicated because of the typically low signal to noise (approx. 0.1 percent) and the large background variability. The OSSE instrument was designed to address these difficulties by periodically offset-pointing the detectors from the source to perform background measurements. These background measurements are used to estimate the background during each of the source observations. The resulting background-subtracted spectra can then be accumulated and fitted for spectral lines and/or continua. Data selection based on various environmental parameters can be performed at various stages during the analysis procedure. In order to achieve the instrument's statistical sensitivity, however, it will be necessary for investigators to develop a detailed understanding of the instrument operation, data collection, and the background spectrum and its variability. A brief description of the major steps in the OSSE spectral analysis process is described, including a discussion of the OSSE background spectrum and examples of several observational strategies
Novel design for an all-sky low-energy gamma-ray observatory (ALLEGRO)
We present a novel concept for a MIDEX satellite mission that allows all sky coverage for gamma-ray bursts and hard x-ray transients. The multiscale alternating shadow collimator (MASC) alone allows for arc minute positioning of 1 second bursts 3 times weaker than the BATSE sensitivity. Our scientific objectives include the ability: (a) to detect and monitor thousands of gamma-ray bursts (GRBs) and hard x- ray sources with sensitivity 3-10 times better than BATSE; (b) to solve the gamma-ray burst mystery; (c) to use gamma- ray bursts as probes of cosmological star formation and to measure cosmological parameters; (d) to understand the physics of the high energy radiation from AGNs and BLAZARs; (e) to study the physics of matter in the extreme around black holes and neutron stars; (f) to determine the pulsar birth rate and physical characteristics. The mission concept, MASC concept, and simulations are presented
- …