3 research outputs found

    Disordered Crystal Structure and Anomalously High Solubility of Radium Carbonate

    Get PDF
    XRD measurements of RaCO3 revealedthat it isnot isostructural with witherite, and direct-space ab initio modeling showed that the carbonate oxygens are highly disordered.It was found that the solubility of RaCO3 is unexpectedlyhigher than the solubility of witherite (log(10) K (sp) (0) = -7.5 and -8.56,respectively), supporting the disordered nature of RaCO3. EXAFS data revealed an ionic radius of Ra2+ of 1.55 & ANGS;. Radium is the only alkaline-earth metal which forms disorderedcrystals in its carbonate phase.Radium-226 carbonate was synthesized from radium-bariumsulfate ((Ra0.76Ba0.24SO4)-Ra-226) at room temperature and characterized by X-ray powder diffraction(XRPD) and extended X-ray absorption fine structure (EXAFS) techniques.XRPD revealed that fractional crystallization occurred and that twophases were formed the major Ra-rich phase, Ra(Ba)CO3, and a minor Ba-rich phase, Ba(Ra)CO3, crystallizingin the orthorhombic space group Pnma (no. 62) thatis isostructural with witherite (BaCO3) but with slightlylarger unit cell dimensions. Direct-space ab initio modeling shows that the carbonate oxygens in the major Ra(Ba)CO3 phase are highly disordered. The solubility of the synthesizedmajor Ra(Ba)CO3 phase was studied from under- and oversaturationat 25.1 & DEG;C as a function of ionic strength using NaCl as thesupporting electrolyte. It was found that the decimal logarithm ofthe solubility product of Ra(Ba)CO3 at zero ionic strength(log(10) K (sp) (0)) is-7.5(1) (2 & sigma;) (s = 0.05 g & BULL;L-1). This is significantly higher than the log(10) K (sp) (0) of witheriteof -8.56 (s = 0.01 g & BULL;L-1), supporting the disordered nature of the major Ra(Ba)CO3 phase. The limited co-precipitation of Ra2+ within witherite,the significantly higher solubility of pure RaCO3 comparedto witherite, and thermodynamic modeling show that the results obtainedin this work for the major Ra(Ba)CO3 phase are also applicableto pure RaCO3. The refinement of the EXAFS data revealsthat radium is coordinated by nine oxygens in a broad bond distancedistribution with a mean Ra-O bond distance of 2.885(3) & ANGS;(1 & sigma;). The Ra-O bond distance gives an ionic radius ofRa(2+) in a 9-fold coordination of 1.545(6) & ANGS; (1 & sigma;)

    Production of zirconium-88 via proton irradiation of metallic yttrium and preparation of target for neutron transmission measurements at DICER

    No full text
    Abstract A process for the production of tens to hundreds of GBq amounts of zirconium-88 (88Zr) using proton beams on yttrium was developed. For this purpose, yttrium metal targets (≈20 g) were irradiated in a ~16 to 34 MeV proton beam at a beam current of 100–200 µA at the Los Alamos Isotope Production Facility (IPF). The 88Zr radionuclide was produced and separated from the yttrium targets using hydroxamate resin with an elution yield of 94(5)% (1σ). Liquid DCl solution in D2O was selected as a suitable 88Zr sample matrix due to the high neutron transmission of deuterium compared to hydrogen and an even distribution of 88Zr in the sample matrix. The separated 88Zr was dissolved in DCl and 8 µL of the obtained solution was transferred to a tungsten sample can with a 1.2 mm diameter hole using a syringe and automated filling station inside a hot cell. Neutron transmission of the obtained 88Zr sample was measured at the Device for Indirect Capture Experiments on Radionuclides (DICER)
    corecore