2 research outputs found

    An Overview on Personal Protective Equipment (PPE) Fabricated with Additive Manufacturing Technologies in the Era of COVID-19 Pandemic

    No full text
    Different additive manufacturing technologies have proven effective and useful in remote medicine and emergency or disaster situations. The coronavirus disease 2019 (COVID-19) disease, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, has had a huge impact on our society, including in relation to the continuous supply of personal protective equipment (PPE). The aim of the study is to give a detailed overview of 3D-printed PPE devices and provide practical information regarding the manufacturing and further design process, as well as describing the potential risks of using them. Open-source models of a half-face mask, safety goggles, and a face-protecting shield are evaluated, considering production time, material usage, and cost. Estimations have been performed with fused filament fabrication (FFF) and selective laser sintering (SLS) technology, highlighting the material characteristics of polylactic acid (PLA), polyamide, and a two-compound silicone. Spectrophotometry measurements of transparent PMMA samples were performed to determine their functionality as goggles or face mask parts. All the tests were carried out before and after the tetra-acetyl-ethylene-diamine (TAED)-based disinfection process. The results show that the disinfection has no significant effect on the mechanical and structural stability of the used polymers; therefore, 3D-printed PPE is reusable. For each device, recommendations and possible means of development are explained. The files of the modified models are provided. SLS and FFF additive manufacturing technology can be useful tools in PPE development and small-series production, but open-source models must be used with special care

    Validation of a novel, low-fidelity virtual reality simulator and an artificial intelligence assessment approach for peg transfer laparoscopic training

    No full text
    Abstract Simulators are widely used in medical education, but objective and automatic assessment is not feasible with low-fidelity simulators, which can be solved with artificial intelligence (AI) and virtual reality (VR) solutions. The effectiveness of a custom-made VR simulator and an AI-based evaluator of a laparoscopic peg transfer exercise was investigated. Sixty medical students were involved in a single-blinded randomised controlled study to compare the VR simulator with the traditional box trainer. A total of 240 peg transfer exercises from the Fundamentals of Laparoscopic Surgery programme were analysed. The experts and AI-based software used the same criteria for evaluation. The algorithm detected pitfalls and measured exercise duration. Skill improvement showed no significant difference between the VR and control groups. The AI-based evaluator exhibited 95% agreement with the manual assessment. The average difference between the exercise durations measured by the two evaluation methods was 2.61 s. The duration of the algorithmic assessment was 59.47 s faster than the manual assessment. The VR simulator was an effective alternative practice compared with the training box simulator. The AI-based evaluation produced similar results compared with the manual assessment, and it could significantly reduce the evaluation time. AI and VR could improve the effectiveness of basic laparoscopic training
    corecore