2 research outputs found

    Selective Detection of Hydrocarbons in Real Atmospheric Conditions by Single MOX Sensor in Temperature Modulation Mode

    No full text
    Selective detection of hydrocarbons – methane and propane – in urban air for industrial safety properties by single metal oxide semiconductor gas sensor has been demonstrated. As sensors were fabricated on the basis of nanocrystalline SnO2 and alumina micro-hotplates. Sensor working temperature modulation has been applied during raw sensor data collection. Pre-processing of acquired data – scaling, baseline extraction and exclusion of non-valid data points has been demonstrated to be critical procedures before application of machine learning algorithms. The achieved accuracy of 86% for correct gas identification in 40-200 ppm range has been demonstrated

    Flame-Made La2O3-Based Nanocomposite CO2 Sensors as Perspective Part of GHG Monitoring System

    No full text
    Continuous monitoring of greenhouse gases with high spatio-temporal resolution has lately become an urgent task because of tightening environmental restrictions. It may be addressed with an economically efficient solution, based on semiconductor metal oxide gas sensors. In the present work, CO2 detection in the relevant concentration range and ambient conditions was successfully effectuated by fine-particulate La2O3-based materials. Flame spray pyrolysis technique was used for the synthesis of sensitive materials, which were studied with X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) and low temperature nitrogen adsorption coupled with Brunauer–Emmett–Teller (BET) effective surface area calculation methodology. The obtained materials represent a composite of lanthanum oxide, hydroxide and carbonate phases. The positive correlation has been established between the carbonate content in the as prepared materials and their sensor response towards CO2. Small dimensional planar MEMS micro-hotplates with low energy consumption were used for gas sensor fabrication through inkjet printing. The sensors showed highly selective CO2 detection in the range of 200–6667 ppm in humid air compared with pollutant gases (H2 50 ppm, CH4 100 ppm, NO2 1 ppm, NO 1 ppm, NH3 20 ppm, H2S 1 ppm, SO2 1 ppm), typical for the atmospheric air of urbanized and industrial area
    corecore