5,870 research outputs found

    Limit-Cycle Properties of a Rijke Tube

    Get PDF
    Thermoacoustic instability appears when unsteady heat release is favourably coupled with acoustic pressure perturbations. The important technical applications involving thermoacoustics are combustion instability in rocket motors and low-pollutant lean flames; noisy industrial burners; pulsed combustors; and thermoacoustic engines. The simplest device for studying thermoacoustic instability is a Rijke tube. In this work, a series of experiments is carried out to determine the nonlinear behavior of the transition to instability and the excited regimes for an electrically driven Rijke tube. A hysteresis effect in the stability boundary is observed. A mathematical theory involving heat transfer, acoustics, and thermoacoustic interactions is developed to predict the transition to instability and limit-cycle properties

    Propagation of an Acoustic Pulse of Finite Amplitude in a Granular Medium

    Get PDF
    A study of propagation of a wide-band acoustic signal in a granular medium is reported. Experimental data on the propagation of pulses with an amplitude up to 3 MPa and characteristic length about 1 µs through a sample of cobalt-manganese nodules are compared with a computer model of the process. An anomalous sig'rfal absorption in the high-frequency range observed with relatively weak sounding pulses is explained under the assumption of a fractal sample structure on a certain scale. When the signal amplitude increases, the ahsorption assumes a normal power form which is evidence of substance structural changes

    Universal low-temperature crossover in two-channel Kondo models

    Full text link
    An exact expression is derived for the electron Green function in two-channel Kondo models with one and two impurities, describing the crossover from non-Fermi liquid (NFL) behavior at intermediate temperatures to standard Fermi liquid (FL) physics at low temperatures. Symmetry-breaking perturbations generically present in experiment ensure the standard low-energy FL description, but the full crossover is wholly characteristic of the unstable NFL state. Distinctive conductance lineshapes in quantum dot devices should result. We exploit a connection between this crossover and one occurring in a classical boundary Ising model to calculate real-space electron densities at finite temperature. The single universal finite-temperature Green function is then extracted by inverting the integral transformation relating these Friedel oscillations to the t matrix. Excellent agreement is demonstrated between exact results and full numerical renormalization group calculations.Comment: 26 pages, 14 figures: updated version including new a section and figure comparing exact results to finite-temperature numerical renormalization group calculation

    Smearing of Coulomb Blockade by Resonant Tunneling

    Full text link
    We study the Coulomb blockade in a grain coupled to a lead via a resonant impurity level. We show that the strong energy dependence of the transmission coefficient through the impurity level can have a dramatic effect on the quantization of the grain charge. In particular, if the resonance is sufficiently narrow, the Coulomb staircase shows very sharp steps even if the transmission through the impurity at the Fermi energy is perfect. This is in contrast to the naive expectation that perfect transmission should completely smear charging effects.Comment: 4 pages, 3 figure

    Asymmetric Zero-Bias Anomaly for Strongly Interacting Electrons in One Dimension

    Full text link
    We study a system of one-dimensional electrons in the regime of strong repulsive interactions, where the spin exchange coupling J is small compared with the Fermi energy, and the conventional Tomonaga-Luttinger theory does not apply. We show that the tunneling density of states has a form of an asymmetric peak centered near the Fermi level. In the spin-incoherent regime, where the temperature is large compared to J, the density of states falls off as a power law of energy \epsilon measured from the Fermi level, with the prefactor at positive energies being twice as large as that at the negative ones. In contrast, at temperatures below J the density of states forms a split peak with most of the weight shifted to negative \epsilon.Comment: 4 pages, 2 figure

    Dynamical conductance in the two-channel Kondo regime of a double dot system

    Full text link
    We study finite-frequency transport properties of the double-dot system recently constructed to observe the two-channel Kondo effect [R. M. Potok et al., Nature 446, 167 (2007)]. We derive an analytical expression for the frequency-dependent linear conductance of this device in the Kondo regime. We show how the features characteristic of the 2-channel Kondo quantum critical point emerge in this quantity, which we compute using the results of conformal field theory as well as numerical renormalization group methods. We determine the universal cross-over functions describing non-Fermi liquid vs. Fermi liquid cross-overs and also investigate the effects of a finite magnetic field.Comment: 11 pages in PRB forma

    Spectral functions of strongly interacting isospin-1/2 bosons in one dimension

    Full text link
    We study a system of one-dimensional (iso)spin-1/2 bosons in the regime of strong repulsive interactions. We argue that the low-energy spectrum of the system consists of acoustic density waves and the spin excitations described by an effective ferromagnetic spin chain with a small exchange constant J. We use this description to compute the dynamic spin structure factor and the spectral functions of the system.Comment: reference adde
    corecore