10 research outputs found

    Mineralization of Paraoxon and Its Use as a Sole C and P Source by a Rationally Designed Catabolic Pathway in Pseudomonas putida

    Full text link
    Organophosphate compounds, which are widely used as pesticides and chemical warfare agents, are cholinesterase inhibitors. These synthetic compounds are resistant to natural degradation and threaten the environment. We constructed a strain of Pseudomonas putida that can efficiently degrade a model organophosphate, paraoxon, and use it as a carbon, energy, and phosphorus source. This strain was engineered with the pnp operon from Pseudomonas sp. strain ENV2030, which encodes enzymes that transform p-nitrophenol into β-ketoadipate, and with a synthetic operon encoding an organophosphate hydrolase (encoded by opd) from Flavobacterium sp. strain ATCC 27551, a phosphodiesterase (encoded by pde) from Delftia acidovorans, and an alkaline phosphatase (encoded by phoA) from Pseudomonas aeruginosa HN854 under control of a constitutive promoter. The engineered strain can efficiently mineralize up to 1 mM (275 mg/liter) paraoxon within 48 h, using paraoxon as the sole carbon and phosphorus source and an inoculum optical density at 600 nm of 0.03. Because the organism can utilize paraoxon as a sole carbon, energy, and phosphorus source and because one of the intermediates in the pathway (p-nitrophenol) is toxic at high concentrations, there is no need for selection pressure to maintain the heterologous pathway

    Whither Political Economy? Theories, Facts and Issues

    Full text link
    corecore