4 research outputs found

    Altered m6A Modification of Specific Cellular Transcripts Affects Flaviviridae Infection

    Get PDF
    The RNA modification N6-methyladenosine (m6A) modulates mRNA fate and thus affects many biological processes. We analyzed m6A across the transcriptome following infection by dengue virus (DENV), Zika virus (ZIKV), West Nile virus (WNV), and hepatitis C virus (HCV). We found that infection by these viruses in the Flaviviridae family alters m6A modification of specific cellular transcripts, including RIOK3 and CIRBP. During viral infection, the addition of m6A to RIOK3 promotes its translation, while loss of m6A in CIRBP promotes alternative splicing. Importantly, viral activation of innate immune sensing or the endoplasmic reticulum (ER) stress response contributes to the changes in m6A in RIOK3 or CIRBP, respectively. Further, several transcripts with infection-altered m6A profiles, including RIOK3 and CIRBP, encode proteins that influence DENV, ZIKV, and HCV infection. Overall, this work reveals that cellular signaling pathways activated during viral infection lead to alterations in m6A modification of host mRNAs to regulate infection. Here, Gokhale, McIntyre et al. identify m6A changes in cellular mRNAs following Flaviviridae infection and demonstrate that infection-activated pathways contribute to these changes. They show that altered m6A modification in RIOK3 and CIRBP mRNAs influence their translation and splicing, respectively, and that RIOK3, CIRBP, and other m6A-altered factors regulate infection

    Engineered immunogens to elicit antibodies against conserved coronavirus epitopes

    Get PDF
    Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employ computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant receptor binding domain. These engineered proteins bind with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interact with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicit sera with broad betacoronavirus reactivity and protect as “boosts” against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine
    corecore