8 research outputs found

    Synthesis and Investigation of Phthalazinones as Antitubercular Agents

    Full text link
    A series of 2- and 7-substituted phthalazinones was synthesised and their potential as anti-tubercular drugs assessed via Mycobacterium tuberculosis (mc 2 6230) growth inhibition assays. All phthalazinones tested showed growth inhibitory activity (MIC <100 μm), and those compounds containing lipophilic and electron-withdrawing groups generally exhibited better anti-tubercular activity. Several lead compounds were identified, including 7-((2-amino-6-(4-fluorophenyl)pyrimidin-4-yl)amino)-2-heptylphthalazin-1(2H)-one (MIC=1.6 μm), 4-tertbutylphthalazin-2(1H)-one (MIC=3 μm), and 7-nitro-phthalazin-1(2H)-one (MIC=3 μm). Mode of action studies indicated that selected pyrimidinyl-phthalazinones may interfere with NADH oxidation, however, the mode of action of the lead compound is independent of this enzyme. MIC=minimum inhibitory concentration.</p

    Activation of type II NADH dehydrogenase by Quinolinequinones mediates antitubercular cell death

    Full text link
    Objectives: Quinolinequinones (QQ) have been shown to inhibit the growth of mycobacterial species, but their mode(s) of action and molecular target(s) remain unknown. To facilitate further development of QQ as antimycobacterial drugs, we investigated the molecular mechanism and target of QQ in mycobacteria. Methods: Cell viability of Mycobacterium tuberculosis and Mycobacterium bovis bacillus Calmette-Guérin was determined in the presence of QQ8c, a representative QQ compound, and isoniazid, a frontline antitubercular drug. The effect of QQ8c on mycobacterial energetics was studied using inverted membrane vesicles. NADH oxidation and formation of reactive oxygen species (ROS) were measured in the presence and absence of KCN. Generation of ROS was measured via oxygen consumption in an oxygen electrode. The effects of QQ8c were compared with the antimycobacterial drug clofazimine in side-by-side experiments. Results: QQ8c challenge resulted in complete sterilization of cultures with no refractory resistant population observed. QQ8c stimulated NADH oxidation by type II NADH dehydrogenase (NDH-2) and oxygen consumption in inverted membrane vesicles. Large quantities of ROS were produced in the presence of QQ8. Even when oxygen consumption was blocked with KCN, activation of NDH-2 by QQ8c occurred suggesting QQ8c was redox cycling. Conclusions: QQ8c targets NDH-2 of the mycobacterial respiratory chain leading to activation of NADH oxidation and generating bactericidal levels of ROS in a manner similar to, but more effectively than, the antimycobacterial drug clofazimine. Our results validate respiratory-generated ROS as an avenue for antimycobacterial drug development.</p

    Helicobacter pylori metabolites exacerbate gastritis through C-type lectin receptors

    Get PDF
    Helicobacter pylori causes gastritis, which has been attributed to the development of H. pylori-specific T cells during infection. However, the mechanism underlying innate immune detection leading to the priming of T cells is not fully understood, as H. pylori evades TLR detection. Here, we report that H. pylori metabolites modified from host cholesterol exacerbate gastritis through the interaction with C-type lectin receptors. Cholesteryl acyl a-glucoside (aCAG) and cholesteryl phosphatidyl a-glucoside (aCPG) were identified as noncanonical ligands for Mincle (Clec4e) and DCAR (Clec4b1). During chronic infection, H. pylori-specific T cell responses and gastritis were ameliorated in Mincle-deficient mice, although bacterial burdens remained unchanged. Furthermore, a mutant H. pylori strain lacking aCAG and aCPG exhibited an impaired ability to cause gastritis. Thus H. pylori-specific modification of host cholesterol plays a pathophysiological role that exacerbates gastric inflammation by triggering C-type lectin receptors
    corecore