21 research outputs found

    Experimental Traumatic Brain Injury and Cell Death - in vivo and in vitro aspects

    No full text
    Traumatic and ischemic brain damage are major causes of disability and death. While much effort has been spent on developing pharmacological treatments for these conditions, no neuroprotective drugs are in clinical use. Neuronal death following trauma and ischemia occurs in selected cell populations of the brain at various time points after the injury, and causes cognitive and behavioral dysfunction. The injury mechanisms are similar in both types of injury. Brain trauma causes ischemia, and mitochondrial dysfunction is an important initiator of both types of cell death. In the first part of the study, a clinically relevant model of traumatic brain injury (TBI) in the rat was used to evaluate the rotating pole test as a test of neuromotor function, as well as the neuroprotective effect of administration of a low dose of prostacyclin following TBI. The rotating pole test was useful to assess outcome and functional improvement following injury, and administration of prostacyclin led to a significantly reduced cortical lesion volume, presumably through an improved microcirculation. Here we show that a low dose of prostacyclin without side effects such as systemic hypotension reduces cell death following experimental TBI. In the second part of the study, the role of mitochondria in cell death following acute brain injury was studied. A flow cytometric method for the analysis of minute samples of isolated brain mitochondria was developed, and applied to compare mitochondria from hippocampal subregions. Cell vulnerability correlated with an increased mitochondrial production of reactive oxygen species and increased sensitivity to calcium-induced mitochondrial permeability transition (mPT). In the final study, we used a functional genomics approach to identify potentially neuroprotective genes that were upregulated following ischemic preconditioning. Increased expression of the mitochondrial protein UCP-2 correlated with cell survival, and overexpression of UCP-2 was neuroprotective both in vivo and in vitro. The results suggest that under basal conditions, UCP-2 may signal through cellular redox systems to upregulate neuroprotective genes. Following injury, UCP-2 inhibits mPT, activation of caspases and cell death. Mitochondrial involvement in ischemic and traumatic brain injury is supported by the strong neuroprotective effect of inhibitors of mPT (e.g. cyclosporin A). The uncoupling proteins have attracted much interest as potential targets for the treatment of obesity, which have led to devlopment of pharmacological inducers of these proteins. The results of this study suggest that such compounds may also be used to induce neuroprotection

    Hypothermia Affects Translocation of Numerous Cytoplasmic Proteins Following Global Cerebral Ischemia.

    No full text
    Using a decapitation ischemia model, we studied translocation of proteins to and from the cytosol in normothermic (NT) and hypothermic (HT) rat brains. 2D gel analysis identified 74 proteins whose cytosolic level changed significantly after 15 min of ischemia. HT preserved the cytosolic levels of several glycolytic enzymes, as well as many plasticity related proteins, otherwise decreased following NT ischemia. The levels of redox-related proteins was lower in HT than in NT. Our results indicate that translocation of proteins to and from the cytosol is an important issue during ischemia

    Effects on brain edema of crystalloid and albumin fluid resuscitation after brain trauma and hemorrhage in the rat.

    No full text
    BACKGROUND: It has been hypothesized that resuscitation with crystalloids after brain trauma increases brain edema compared with colloids, but previous studies on the subject have been inconclusive. To test this hypothesis, the authors compared groups resuscitated with either colloid or crystalloid. METHODS: After fluid percussion injury, rats were subjected to a controlled hemorrhage of 20 ml/kg and were randomized to 5% albumin at 20 ml/kg (A20), isotonic Ringer's acetate at 50 ml/kg (C50), or 90 ml/kg (C90). After 3 or 24 h, water content in the injured cortex was determined using a wet/dry weight method. Blood volume was calculated from plasma volume, measured by 125I-albumin dilution, and hematocrit. Oncotic pressure and osmolality were measured with osmometers. RESULTS: At 3 h, blood volume was equal in the A20 and C90 groups and lower in the C50 group. Oncotic pressure was reduced by 35-40% in the crystalloid groups and unchanged in the albumin group. Cortical water content in the A20 group was lower than in the C90 group (81.3 +/- 0.5% vs. 82.1 +/- 1.1%, P < 0.05), but it was not different from the C50 group (81.8 +/- 1.1%). At 24 h, oncotic pressure and blood volume were normalized in all groups, and cortical water content was significantly lower in the albumin group than in the crystalloid groups. Osmolality and arterial pressure were equal in all groups throughout the experiment. CONCLUSIONS: When given to the same intravascular volume expansion, isotonic crystalloids caused greater posttraumatic brain edema than 5% albumin at 3 and 24 h after trauma

    Infusion of prostacyclin following experimental brain injury in the rat reduces cortical lesion volume

    No full text
    Endothelial-derived prostacyclin is an important regulator of microvascular function, and its main actions are inhibition of platelet/leukocyte aggregation and adhesion, and vasodilation. Disturbances in endothelial integrity following traumatic brain injury (TBI) may result in insufficient prostacyclin production and participate in the pathophysiological sequelae of brain injury. The objective of this study was to evaluate the potential therapeutic effects of a low-dose prostacyclin infusion on cortical lesion volume, CA3 neuron survival and functional outcome following TBI in the rat. Anesthetized animals (sodium pentobarbital, 60 mg/kg, i.p.) were subjected to a lateral fluid percussion brain injury (2.5 atm) or sham injury. Following TBI, animals were randomized to receive a constant infusion of either prostacyclin (1 ng/kg x min(-1) i.v.) or vehicle over 48 h. All sham animals received vehicle (n = 6). Evaluation of neuromotor function, lesion volume, and CA3 neuronal loss was performed blindly. By 7 days postinjury, cortical lesion volume was significantly reduced by 43% in the prostacyclin-treated group as compared to the vehicle treated group (p < 0.01; n = 12 prostacyclin, n = 12 vehicle). No differences were observed in neuromotor function (48 h and 7 days following TBI), or in hippocampal cell loss (7 days following TBI) between the prostacyclin- and vehicle-treated groups. We conclude that prostacyclin in a low dose reduces loss of neocortical neurons following TBI and may be a potential clinical therapeutic agent to reduce neuronal cell death associated with brain trauma

    Delayed neuromotor recovery and increased memory acquisition dysfunction following experimental brain trauma in mice lacking the DNA repair gene XPA.

    No full text
    Object: This study investigates the outcome after traumatic brain injury (TBI) in mice lacking the essential DNA repair gene xeroderma pigmentosum group A (XPA). As damage to DNA has been implicated in neuronal cell death in various models, the authors sought to elucidate whether the absence of an essential DNA repair factor would affect the outcome of TBI in an experimental setting. Methods: Thirty-seven adult mice of either wild-type (n = 18) or XPA-deficient ("knock-out" [n = 19]) genotype were subjected to controlled cortical impact experimental brain trauma, which produced a focal brain injury. Sham-injured mice of both genotypes were used as controls (9 in each group). The mice were subjected to neurobehavoral tests evaluating learning/acquisition (Morris water maze) and motor dysfunction (Rotarod and composite neuroscore test), pre- and postinjury up to 4 weeks. The mice were killed after 1 or 4 weeks, and cortical lesion volume, as well as hippocampal and thalamic cell loss, was evaluated. Hippocampal staining with doublecortin antibody was used to evaluate neurogenesis after the insult. Results: Brain-injured XPA(-/-) mice exhibited delayed recovery from impairment in neurological motor function, as well as pronounced cognitive dysfunction in a spatial learning task (Morris water maze), compared with injured XPA(+/+) mice (p < 0.05). No differences in cortical lesion volume, hippocampal damage, or thalamic cell loss were detected between XPA(+/+) and XPA(-/-) mice after brain injury. Also, no difference in the number of cells stained with doublecortin in the hippocampus was detected. Conclusions: The authors' results suggest that lack of the DNA repair factor XPA may delay neurobehavioral recovery after TBI, although they do not support the notion that this DNA repair deficiency results in increased cell or tissue death in the posttraumatic brain

    The rotating pole test: evaluation of its effectiveness in assessing functional motor deficits following experimental head injury in the rat

    No full text
    Neurological motor dysfunction is often an integral component of the neurological sequelae of traumatic brain injury (TBI). In experimental TBI, neurological motor testing is an outcome measure used to monitor severity of injury, and the response to treatment. This study evaluates the effectiveness and sensitivity of the rotating pole test (RP) to characterize and evaluate the temporal course of motor deficits after lateral fluid percussion (FP) injury to the rat brain. The results are compared with the previously characterized and widely used composite neuroscore of motor function (NS). The animals were required to walk across an elevated wooden pole that was either stationary or rotating to left or right directions at different speeds. Male Wistar rats underwent lateral FP injury of moderate severity (mean 2.4 atm, n = 9) or sham surgery (n = 9), and were tested at 48 h and 7 days post-injury using the NS and RP. The results of the NS directly correlated to the results of the RP, showing a significant injury effect at both 48 h and 7 days. This is the first study to show that the RP-test detects neurological motor deficits after lateral FP injury, and suggests that this technique is a reliable behavioral tool for evaluating neurological motor function in the acute period after experimental TBI
    corecore