196 research outputs found

    POSSIS: predicting spectra, light curves and polarization for multi-dimensional models of supernovae and kilonovae

    Full text link
    We present POSSIS, a time-dependent three-dimensional Monte Carlo code for modelling radiation transport in supernovae and kilonovae. The code incorporates wavelength- and time-dependent opacities and predicts viewing-angle dependent spectra, light curves and polarization for both idealized and hydrodynamical explosion models. We apply the code to a kilonova model with two distinct ejecta components, one including lanthanide elements with relatively high opacities and the other devoid of lanthanides and characterized by lower opacities. We find that a model with total ejecta mass Mej=0.04 M⊙M_\mathrm{ej}=0.04\,M_\odot and half-opening angle of the lanthanide-rich component Φ=30∘\Phi=30^\circ provides a good match to GW 170817 / AT 2017gfo for orientations near the polar axis (i.e. for a system viewed close to face-on). We then show how crucial is the use of self-consistent multi-dimensional models in place of combining one-dimensional models to infer important parameters as the ejecta masses. We finally explore the impact of MejM_\mathrm{ej} and Φ\Phi on the synthetic observables and highlight how the relatively fast computation times of POSSIS make it well-suited to perform parameter-space studies and extract key properties of supernovae and kilonovae. Spectra calculated with POSSIS in this and future studies will be made publicly available.Comment: 10 pages, 7 figures; accepted for publication in MNRAS; all modelled spectra are made available at https://github.com/mbulla/kilonova_model

    Modeling continuum polarization levels of tidal disruption events based on the collision-induced outflow mode

    Full text link
    TDEs have been observed in the optical and UV for more than a decade but the underlying emission mechanism still remains a puzzle. It has been suggested that viewing angle effects could potentially explain their large photometric and spectroscopic diversity. Polarization is indeed sensitive to the viewing angle and the first polarimetry studies of TDEs are now available, calling for a theoretical interpretation. In this study, we model the continuum polarization levels of TDEs using the radiative transfer code POSSIS and the collision-induced outflow (CIO) TDE emission scenario where unbound shocked gas originating from a debris stream intersection point offset from the black hole, reprocesses the hard emission from the accretion flow into UV and optical bands. We explore two different cases of peak mass fallback rates M'p (~3 and ~0.3 Msol/yr) while varying the following geometrical parameters: the distance R_int from the black hole (BH) to the intersection point, the radius of the photosphere around the BH R_ph, on the surface of which the photons are generated, and the opening angle Deltheta (anisotropic emission). For the high mass fallback rate case, we find for every viewing angle polarization levels below one (P<1%) and P<0.5% for 10/12 simulations. The absolute value of polarization reaches its maximum (P_max) for equatorial viewing angles. For the low mass fallback rate case, the maximum value predicted is P~8.8% and P_max is reached for intermediate viewing angles. We find that the polarization depends strongly on i) the optical depths at the central regions set by the different M'p values and ii) the viewing angle. Finally, by comparing our model predictions to polarization observations of a few TDEs, we attempt to constrain their observed viewing angles and we show that multi-epoch polarimetric observations can become a key factor in constraining the viewing angle of TDEs.Comment: Accepted for publication in Astronomy and Astrophysics journal; 20 page

    Black Hole - Neutron Star mergers: using kilonovae to constrain the equation of state

    Full text link
    The merging of a binary system involving two neutron stars (NSs), or a black hole (BH) and a NS, often results in the emission of an electromagnetic (EM) transient. One component of this EM transient is the epic explosion known as a kilonova (KN). The characteristics of the KN emission can be used to probe the equation of state (EoS) of NS matter responsible for its formation. We predict KN light curves from computationally simulated BH-NS mergers, by using the 3D radiative transfer code \texttt{POSSIS}. We investigate two EoSs spanning most of the allowed range of the mass-radius diagram. We also consider a soft EoS compatible with the observational data within the so-called 2-families scenario in which hadronic stars coexist with strange stars. Computed results show that the 2-families scenario, characterized by a soft EoS, should not produce a KN unless the mass of the binary components are small (MBH≤6M⊙M_{\rm BH} \leq 6M_{\odot}, MNS≤1.4M⊙M_{\rm NS} \leq 1.4M_{\odot}) and the BH is rapidly spinning (χBH≥0.3\chi_{\rm BH} \geq 0.3). In contrast, a strong KN signal potentially observable from future surveys (e.g. VRO/LSST) is produced in the 1-family scenario for a wider region of the parameter space, and even for non-rotating BHs (χBH=0\chi_{\rm BH} = 0) when MBH=4M⊙M_{\rm BH} = 4M_{\odot} and MNS=1.2M⊙M_{\rm NS} = 1.2M_{\odot}. We also provide a fit that allows for the calculation of the unbound mass from the observed KN magnitude, without running timely and costly radiative transfer simulations. Findings presented in this paper will be used to interpret light curves anticipated during the fourth observing run (O4), of the advanced LIGO, advanced Virgo and KAGRA interferometers and thus to constrain the EoS of NS matter.Comment: 14 pages, 16 figures, 2 table

    Impact of jets on kilonova photometric and polarimetric emission from binary neutron star mergers

    Full text link
    A merger of binary neutron stars creates heavy unstable elements whose radioactive decay produces a thermal emission known as a kilonova. In this paper, we predict the photometric and polarimetric behaviour of this emission by performing 3-D Monte Carlo radiative transfer simulations. In particular, we choose three hydrodynamical models for merger ejecta, two including jets with different luminosities and one without a jet structure, to help decipher the impact of jets on the light curve and polarimetric behaviour. In terms of photometry, we find distinct color evolutions across the three models. Models without a jet show the highest variation in light curves for different viewing angles. In contrast, to previous studies, we find models with a jet to produce fainter kilonovae when viewed from orientations close to the jet axis, compared to a model without a jet. In terms of polarimetry, we predict relatively low levels (<~0.3-0.4%) at all orientations that, however, remain non-negligible until a few days after the merger and longer than previously found. Despite the low levels, we find that the presence of a jet enhances the degree of polarization at wavelengths ranging from 0.25 to 2.5\micron, an effect that is found to increase with the jet luminosity. Thus, future photometric and polarimetric campaigns should observe kilonovae in blue and red filters for a few days after the merger to help constrain the properties of the ejecta (e.g. composition) and jet.Comment: 11 pages, 7 figures, accepted for publication and in pres

    An asymmetric electron-scattering photosphere around optical tidal disruption events

    Full text link
    A star crossing the tidal radius of a supermassive black hole will be spectacularly ripped apart with an accompanying burst of radiation. A few tens of such tidal disruption events (TDEs) have now been identified in the optical wavelengths, but the exact origin of the strong optical emission remains inconclusive. Here we report polarimetric observations of three TDEs. The continuum polarization is independent of wavelength, while emission lines are partially depolarized. These signatures are consistent with optical photons being scattered and polarized in an envelope of free electrons. An almost axisymmetric photosphere viewed from different angles is in broad agreement with the data, but there is also evidence for deviations from axial symmetry before the peak of the flare and significant time evolution at early times, compatible with the rapid formation of an accretion disk. By combining a super-Eddington accretion model with a radiative transfer code we generate predictions for the degree of polarization as a function of disk mass and viewing angle, and we show that the predicted levels are compatible with the observations, for extended reprocessing envelopes of ∼\sim1000 gravitational radii. Spectropolarimetry therefore constitutes a new observational test for TDE models, and opens an important new line of exploration in the study of TDEs.Comment: Author's version of paper to appear in Nature Astronomy. In the journal version the detailed discussion on the ISP determination will be moved from the Methods section to a Supplementary Information section. 58 pages in double spacing format, including 5 Figures, 10 Extended Data Figures and 2 Table

    DECam-GROWTH Search for the Faint and Distant Binary Neutron Star and Neutron Star-Black Hole Mergers in O3a

    Get PDF
    Synoptic searches for the optical counterpart to a binary neutron star (BNS) or neutron star-black hole (NSBH) merger can pose significant challenges towards the discovery of kilonovae and performing multi-messenger science. In this work, we describe the advantage of a global multi-telescope network towards this end, with a particular focus on the key and complementary role the Dark Energy Camera (DECam) plays in multi-facility follow-up. We describe the Global Relay of Observatories Watching Transients Happen (GROWTH) Target-of-Opportunity (ToO) Marshal, a common web application we built to ingest events, plan observations, search for transient candidates, and retrieve performance summary statistics for all of the telescopes in our network. Our infrastructure enabled us to conduct observations of two events during O3a, S190426c and S190510g. Furthermore, our analysis of deep DECam observations of S190814bv conducted by the DESGW team, and access to a variety of global follow-up facilities allowed us to place meaningful constraints on the parameters of the kilonova and the merging binary. We emphasize the importance of a global telescope network in conjunction with a power telescope like DECam in performing searches for the counterparts to gravitational-wave sources
    • …
    corecore