1 research outputs found
Current-induced nonequilibrium vibrations in single-molecule devices
Finite-bias electron transport through single molecules generally induces
nonequilibrium molecular vibrations (phonons). By a mapping to a Fokker-Planck
equation, we obtain analytical scaling forms for the nonequilibrium phonon
distribution in the limit of weak electron-phonon coupling within a
minimal model. Remarkably, the width of the phonon distribution diverges as
when the coupling decreases, with voltage-dependent,
non-integer exponents . This implies a breakdown of perturbation theory
in the electron-phonon coupling for fully developed nonequilibrium. We also
discuss possible experimental implications of this result such as
current-induced dissociation of molecules.Comment: 7 pages, 4 figures; revised and extended version published in Phys.
Rev.