48 research outputs found

    Potassium uptake in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 mainly depends on a Ktr-like system encoded by slr1509 (ntpJ)

    Get PDF
    AbstractThe molecular basis of potassium uptake in cyanobacteria has not been elucidated. However, genes known from other bacteria to encode potassium transporters can be identified in the genome of Synechocystis sp. strain PCC 6803. Mutants defective in kdpA and ntpJ were generated and characterized to address the role of the Kdp and KtrAB systems in this strain. KtrAB is crucial for K+ uptake, as the ΔntpJ mutant shows slowed growth, slowed potassium uptake kinetics, and increased salt sensitivity. The ΔkdpA mutant has the same phenotype as the wild type even at limiting potassium, but a ΔkdpAΔntpJ double mutant is not viable, indicating a role of Kdp for potassium uptake when the Ktr system is not functioning

    Crystallization of Intact and Subunit L-Deficient Monomers from Synechocystis PCC 6803 Photosystem I

    Get PDF
    Photosystem I monomers from wildtype cells of Synechocystis PCC 6803 and from a mu­tant deficient in the psaL gene were crystallized. PsaL encodes for the hydrophobic subunit L, which has been proposed to constitute the trimerization domain in the PS I trimer. The absence of subunit L facilitated crystallization of the PS I monomer. The unit cell dimensions and the space group for the crystals from this preparation could be determined to be a = b = 132 Å , c -525 Å, α = β = 90°, y = 120°, the space group is P61 or P65. The results show the potential of using specifically designed deletion mutants of an integral membrane protein for the systematic improvement of crystal structure data
    corecore