15 research outputs found
Implications of growth factor alterations in the treatment of pancreatic cancer
Pancreatic cancer ranks fifth as a cause of cancer-related death in the world with an overall 5-year survival rate of less than 1% and a median survival of less than a year after tumour detection. Most of these patients have already metastases at the time of diagnosis. The oncologic strategies such as chemotherapy, radiotherapy, antihormonal modalities or the systemic use of specific monoclonal antibodies have not achieved a significant improvement in the survival of pancreatic cancer patients. Recent studies suggest that alterations in molecular pathways, particularly in growth factor mediated mechanisms, that regulate cell proliferation and differentiation play a pivotal role in the pathogenesis of this cancer. The molecular knowledge regarding changes in the expression of growth factors in pancreatic cancer has the potential to improve diagnostic and therapeutic treatment strategies in the near future
Promoter methylation of CDKN2A and lack of p16 expression characterize patients with hepatocellular carcinoma
<p>Abstract</p> <p>Background</p> <p>The product of CDKN2A, p16 is an essential regulator of the cell cycle controlling the entry into the S-phase. Herein, we evaluated CDKN2A promoter methylation and p16 protein expression for the differentiation of hepatocellular carcinoma (HCC) from other liver tumors.</p> <p>Methods</p> <p>Tumor and corresponding non-tumor liver tissue samples were obtained from 85 patients with liver tumors. CDKN2A promoter methylation was studied using MethyLight technique and methylation-specific PCR (MSP). In the MethyLight analysis, samples with ≥ 4% of PMR (percentage of methylated reference) were regarded as hypermethylated. p16 expression was evaluated by immunohistochemistry in tissue sections (n = 148) obtained from 81 patients using an immunoreactivity score (IRS) ranging from 0 (no expression) to 6 (strong expression).</p> <p>Results</p> <p>Hypermethylation of the CDKN2A promoter was found in 23 HCCs (69.7%; mean PMR = 42.34 ± 27.8%), six (20.7%; mean PMR = 31.85 ± 18%) liver metastases and in the extralesional tissue of only one patient. Using MSP, 32% of the non-tumor (n = 85), 70% of the HCCs, 40% of the CCCs and 24% of the liver metastases were hypermethylated. Correspondingly, nuclear p16 expression was found immunohistochemically in five (10.9%, mean IRS = 0.5) HCCs, 23 (92%; mean IRS = 4.9) metastases and only occasionally in hepatocytes of non-lesional liver tissues (mean IRS = 1.2). The difference of CDKN2A-methylation and p16 protein expression between HCCs and liver metastases was statistically significant (p < 0.01, respectively).</p> <p>Conclusion</p> <p>Promoter methylation of CDKN2A gene and lack of p16 expression characterize patients with HCC.</p
Differential Expression of SPARC in Intestinal-type Gastric Cancer Correlates with Tumor Progression and Nodal Spread
AIMS: Nodal spread is the single most important prognostic factor of survival in gastric cancer patients. In this study, genes that were upregulated in the lymph node metastases of gastric cancer were identified and may serve as putative novel therapeutic target. METHODS: Complementary DNA (cDNA) microarray analysis and quantitative real-time polymerase chain reaction of primary gastric carcinomas and matched lymph node metastasis were carried out. Immunohistochemistry with anti-SPARC antibodies was performed on large tissue sections of 40 cases with primary gastric carcinoma (20 diffuse, 20 intestinal) and the corresponding lymph node metastases, as well as on tissue microarrays of 152 gastric cancer cases. RESULTS: A cDNA microarray identified SPARC as being upregulated in primary gastric carcinoma tissue and the corresponding lymph node metastasis compared with the nonneoplastic mucosa. SPARC was expressed in fibroblasts and, occasionally, in tumor cells. However, the level of immunoreactivity was particularly strong in stromal cells surrounding the tumor. The level of expression of SPARC, determined by immunohistochemistry, correlated in intestinal-type gastric cancer with the local tumor growth, nodal spread, and tumor stage according to the International Union Against Cancer. CONCLUSIONS: Our study provides transcriptional and translational evidence for the differential expression of SPARC in gastric cancer tissue. On the basis of our observations and those made by others, we hypothesize that SPARC is a promising novel target for the treatment of gastric cancer
Copy number load predicts outcome of metastatic colorectal cancer patients receiving bevacizumab combination therapy
Increased copy number alterations (CNAs) indicative of chromosomal instability (CIN) have been associated with poor cancer outcome. Here, we study CNAs as potential biomarkers of bevacizumab (BVZ) response in metastatic colorectal cancer (mCRC). We cluster 409 mCRCs in three subclusters characterized by different degrees of CIN. Tumors belonging to intermediate-to-high instability clusters have improved outcome following chemotherapy plus BVZ versus chemotherapy alone. In contrast, low instability tumors, which amongst others consist of POLE-mutated and microsatellite-instable tumors, derive no further benefit from BVZ. This is confirmed in 81 mCRC tumors from the phase 2 MoMa study involving BVZ. CNA clusters overlap with CRC consensus molecular subtypes (CMS); CMS2/4 xenografts correspond to intermediate-to-high instability clusters and respond to FOLFOX chemotherapy plus mouse avastin (B20), while CMS1/3 xenografts match with low instability clusters and fail to respond. Overall, we identify copy number load as a novel potential predictive biomarker of BVZ combination therapy.status: publishe
Loss of Chromosome 18q11.2-q12.1 Is Predictive for Survival in Patients With Metastatic Colorectal Cancer Treated With Bevacizumab
Purpose Patients with metastatic colorectal cancer (mCRC) have limited benefit from the addition of bevacizumab to standard chemotherapy. However, a subset probably benefits substantially, highlighting an unmet clinical need for a biomarker of response to bevacizumab. Previously, we demonstrated that losses of chromosomes 5q34, 17q12, and 18q11.2-q12.1 had a significant correlation with progression-free survival (PFS) in patients with mCRC treated with bevacizumab in the CAIRO2 clinical trial but not in patients who did not receive bevacizumab in the CAIRO trial. This study was designed to validate these findings. Materials and Methods Primary mCRC samples were analyzed from two cohorts of patients who received bevacizumab as first-line treatment; 96 samples from the European multicenter study Angiopredict (APD) and 81 samples from the Italian multicenter study, MOMA. A third cohort of 90 samples from patients with mCRC who did not receive bevacizumab was analyzed. Copy number aberrations of tumor biopsy specimens were measured by shallow whole-genome sequencing and were correlated with PFS, overall survival (OS), and response. Results Loss of chromosome 18q11.2-q12.1 was associated with prolonged PFS most significantly in both the cohorts that received bevacizumab (APD: hazard ratio, 0.54; P = .01; PFS difference, 65 days; MOMA: hazard ratio, 0.55; P = .019; PFS difference, 49 days). A similar association was found for OS and overall response rate in these two cohorts, which became significant when combined with the CAIRO2 cohort. Median PFS in the cohort of patients with mCRC who did not receive bevacizumab and in the CAIRO cohort was similar to that of the APD, MOMA, and CAIRO2 patients without an 18q11.2-q12.1 loss. Conclusion We conclude that the loss of chromosome 18q11.2-q12.1 is consistently predictive for prolonged PFS in patients receiving bevacizumab. The predictive value of this loss is substantiated by a significant gain in OS and overall response rate.status: publishe