10,380 research outputs found
Outbursts of Young Stellar Objects
We argue that the outbursts of the FU Orionis stars occur on timescales which
are much longer than expected from the standard disc instability model with
\alpha_{c} \gtrsim 10^{-3}. The outburst, recurrence, and rise times are
consistent with the idea that the accretion disc in these objects is truncated
at a radius R_{i} \sim 40 \rsun. In agreement with a number of previous authors
we suggest that the inner regions of the accretion discs in FU Ori objects are
evacuated by the action of a magnetic propeller anchored on the central star.
We develop an analytic solution for the steady state structure of an accretion
disc in the presence of a central magnetic torque, and present numerical
calculations to follow its time evolution. These calculations confirm that a
recurrence time that is consistent with observations can be obtained by
selecting appropriate values for viscosity and magnetic field strength.Comment: 13 pages, 7 figures, accepted by MNRA
National Hospital Management Portal (NHMP): a framework for e-health implementation
Health information represents the main basis for health decisionmaking
process and there have been some efforts to increase access to health information in developing countries. However, most of these efforts are based on the internet which has minimal penetration especially in the rural and sub-urban part of developing countries. In this work, a platform for medical record acquisition via the ubiquitous 2.5G/3G wireless communications technologies is presented. The National Hospital Management Portal (NHMP)platform has a central database at each specific country’s national hospita
Estimating An Optimal Backpropagation Algorithm for Training An ANN with the EGFR Exon 19 Nucleotide Sequence: An Electronic Diagnostic Basis for Non–Small Cell Lung Cancer(NSCLC)
One of the most common forms of medical malpractices globally is an error in diagnosis. An improper
diagnosis occurs when a doctor fails to identify a disease or report a disease when the patient is actually
healthy. A disease that is commonly misdiagnosed is lung cancer. This cancer type is a major health problem
internationally because it is responsible for 15% of all cancer diagnosis and 29% of all cancer deaths. The two
major sub-types of lung cancer are; small cell lung cancer (about 13%) and non-small cell lung cancer
(%SCLC- about 87%). The chance of surviving lung cancer depends on its correct diagnosis and/or the stage at
the time it is diagnosed. However, recent studies have identified somatic mutations in the epidermal growth
factor receptor (EGFR) gene in a subset of non-small cell lung cancer (%SCLC) tumors. These mutations occur
in the tyrosine kinase domain of the gene. The most predominant of the mutations in all %SCLC patients
examined is deletion mutation in exon 19 and it accounts for approximately 90% of the EGFR-activating
mutations. This makes EGFR genomic sequence a good candidate for implementing an electronic diagnostic
system for %SCLC. In this study aimed at estimating an optimum backpropagation training algorithm for a
genomic based A%% system for %SCLC diagnosis, the nucleotide sequences of EGFR’s exon 19 of a noncancerous
cell were used to train an artificial neural network (A%%). Several A%% back propagation training
algorithms were tested in MATLAB R2008a to obtain an optimal algorithm for training the network. Of the nine
different algorithms tested, we achieved the best performance (i.e. the least mean square error) with the
minimum epoch (training iterations) and training time using the Levenberg-Marquardt algorithm
Automatic Electrical Appliances Control Panel Based on Infrared and Wi-Fi: A Framework for Electrical Energy Conservation
-Today, proprietary home automation targets very specific applications which operate mostly on a
cable based infrastructure. In contrast to that, our implementation builds on a wireless platform for the
automatic control of house hold electrical appliances. The nodes gather sensor readings in a home and
transmit them to a central automation server. There, the readings are matched against a list of script
statements. When there is a match, a specific action is performed. An important property of the system is that
the control of all home appliances is done by means of the ubiquitous Infrared and Wi-Fi wireless
technologies. This way, the co-operation between manufacturers is not a necessity in order to connect
devices to the home automation network
The steady-state structure of accretion discs in central magnetic fields
We develop a new analytic solution for the steady-state structure of a thin
accretion disc under the influence of a magnetic field that is anchored to the
central star. The solution takes a form similar to that of Shakura and Sunyaev
and tends to their solution as the magnetic moment of the star tends to zero.
As well as the Kramer's law case, we obtain a solution for a general opacity.
The effects of varying the mass transfer rate, spin period and magnetic field
of the star as well as the opacity model applied to the disc are explored for a
range of objects. The solution depends on the position of the magnetic
truncation radius. We propose a new approach for the identification of the
truncation radius and present an analytic expression for its position.Comment: 11 pages, 7 figures, accepted by MNRA
Nomadic Base Station (NBS): a Software Defined Radio (SDR) based Architecture for Capacity Enhancement in Mobile Communications Networks
In this research work, the problem of congestion that leads to dropped calls at GSM cell sites and drastic reduction in network capacity is addressed. We designed a novel GSM base station architecture named Nomadic Base Station (NBS) which is based on Software Defined Radio (SDR) architecture and simulated the LNA for its receiver front-end. The NBS receiver LNA selects and amplifies GSM signal bursts operating at 900MHz and 1800MHz Radio Frequency Band. The later stages translate the Radio Frequency (RF) signal to Intermediate Frequency (IF) signal. This implements the SDR technology by digitizing the IF signal into bit streams that can be processed on generic Central Processing Unit (CPU) using custom written signal processing software
Plastic Mannequin-Based Robotic Telepresence for Remote Clinical Ward Rounding
Mobile robotic telepresence is a potential solution to addressing the problem of access to quality healthcare delivery in rural areas. Despite the availability of this system in its different forms, the capital and operating costs are unffordable for people living in rural areas, particularly in emerging economies. In this paper, the authors reduced the cost of mobile robotic telepresence solution for remote ward rounding using plastic mannequin and solar photovoltaic technology. An IP camera was fixed in each of the eye sockets of the plastic mannequin. These cameras are connected to a mini-computer embedded in the plastic mannequin. A Wi-Fi module establishes an Internet connection between remote physicians and rural healthcare facilities. In addition, most of these communities are not even connected to the power grid. Therefore, the system is powered by a solar photovoltaic energy source to provide a cheap and reliable power system. Another unique feature of this solution is that it gives the patient a better impression of the physical presence of a physician. This development will increase the adoption of robotic telepresense for remote clinical ward rounding in developing countrie
- …